Not enough data to create a plot.
Try a different view from the menu above.
Ma, Chen
A Survey on the Memory Mechanism of Large Language Model based Agents
Zhang, Zeyu, Bo, Xiaohe, Ma, Chen, Li, Rui, Chen, Xu, Dai, Quanyu, Zhu, Jieming, Dong, Zhenhua, Wen, Ji-Rong
Large language model (LLM) based agents have recently attracted much attention from the research and industry communities. Compared with original LLMs, LLM-based agents are featured in their self-evolving capability, which is the basis for solving real-world problems that need long-term and complex agent-environment interactions. The key component to support agent-environment interactions is the memory of the agents. While previous studies have proposed many promising memory mechanisms, they are scattered in different papers, and there lacks a systematical review to summarize and compare these works from a holistic perspective, failing to abstract common and effective designing patterns for inspiring future studies. To bridge this gap, in this paper, we propose a comprehensive survey on the memory mechanism of LLM-based agents. In specific, we first discuss ''what is'' and ''why do we need'' the memory in LLM-based agents. Then, we systematically review previous studies on how to design and evaluate the memory module. In addition, we also present many agent applications, where the memory module plays an important role. At last, we analyze the limitations of existing work and show important future directions. To keep up with the latest advances in this field, we create a repository at \url{https://github.com/nuster1128/LLM_Agent_Memory_Survey}.
Treatment-Aware Hyperbolic Representation Learning for Causal Effect Estimation with Social Networks
Cui, Ziqiang, Tang, Xing, Qiao, Yang, He, Bowei, Chen, Liang, He, Xiuqiang, Ma, Chen
Estimating the individual treatment effect (ITE) from observational data is a crucial research topic that holds significant value across multiple domains. How to identify hidden confounders poses a key challenge in ITE estimation. Recent studies have incorporated the structural information of social networks to tackle this challenge, achieving notable advancements. However, these methods utilize graph neural networks to learn the representation of hidden confounders in Euclidean space, disregarding two critical issues: (1) the social networks often exhibit a scalefree structure, while Euclidean embeddings suffer from high distortion when used to embed such graphs, and (2) each ego-centric network within a social network manifests a treatment-related characteristic, implying significant patterns of hidden confounders. To address these issues, we propose a novel method called Treatment-Aware Hyperbolic Representation Learning (TAHyper). Firstly, TAHyper employs the hyperbolic space to encode the social networks, thereby effectively reducing the distortion of confounder representation caused by Euclidean embeddings. Secondly, we design a treatment-aware relationship identification module that enhances the representation of hidden confounders by identifying whether an individual and her neighbors receive the same treatment. Extensive experiments on two benchmark datasets are conducted to demonstrate the superiority of our method.
Less or More From Teacher: Exploiting Trilateral Geometry For Knowledge Distillation
Hu, Chengming, Wu, Haolun, Li, Xuan, Ma, Chen, Chen, Xi, Yan, Jun, Wang, Boyu, Liu, Xue
Knowledge distillation aims to train a compact student network using soft supervision from a larger teacher network and hard supervision from ground truths. However, determining an optimal knowledge fusion ratio that balances these supervisory signals remains challenging. Prior methods generally resort to a constant or heuristic-based fusion ratio, which often falls short of a proper balance. In this study, we introduce a novel adaptive method for learning a sample-wise knowledge fusion ratio, exploiting both the correctness of teacher and student, as well as how well the student mimics the teacher on each sample. Our method naturally leads to the intra-sample trilateral geometric relations among the student prediction ($S$), teacher prediction ($T$), and ground truth ($G$). To counterbalance the impact of outliers, we further extend to the inter-sample relations, incorporating the teacher's global average prediction $\bar{T}$ for samples within the same class. A simple neural network then learns the implicit mapping from the intra- and inter-sample relations to an adaptive, sample-wise knowledge fusion ratio in a bilevel-optimization manner. Our approach provides a simple, practical, and adaptable solution for knowledge distillation that can be employed across various architectures and model sizes. Extensive experiments demonstrate consistent improvements over other loss re-weighting methods on image classification, attack detection, and click-through rate prediction.
Offline Imitation Learning with Variational Counterfactual Reasoning
He, Bowei, Sun, Zexu, Liu, Jinxin, Zhang, Shuai, Chen, Xu, Ma, Chen
In offline imitation learning (IL), an agent aims to learn an optimal expert behavior policy without additional online environment interactions. However, in many real-world scenarios, such as robotics manipulation, the offline dataset is collected from suboptimal behaviors without rewards. Due to the scarce expert data, the agents usually suffer from simply memorizing poor trajectories and are vulnerable to variations in the environments, lacking the capability of generalizing to new environments. To automatically generate high-quality expert data and improve the generalization ability of the agent, we propose a framework named \underline{O}ffline \underline{I}mitation \underline{L}earning with \underline{C}ounterfactual data \underline{A}ugmentation (OILCA) by doing counterfactual inference. In particular, we leverage identifiable variational autoencoder to generate \textit{counterfactual} samples for expert data augmentation. We theoretically analyze the influence of the generated expert data and the improvement of generalization. Moreover, we conduct extensive experiments to demonstrate that our approach significantly outperforms various baselines on both \textsc{DeepMind Control Suite} benchmark for in-distribution performance and \textsc{CausalWorld} benchmark for out-of-distribution generalization. Our code is available at \url{https://github.com/ZexuSun/OILCA-NeurIPS23}.
Robustness-enhanced Uplift Modeling with Adversarial Feature Desensitization
Sun, Zexu, He, Bowei, Ma, Ming, Tang, Jiakai, Wang, Yuchen, Ma, Chen, Liu, Dugang
Uplift modeling has shown very promising results in online marketing. However, most existing works are prone to the robustness challenge in some practical applications. In this paper, we first present a possible explanation for the above phenomenon. We verify that there is a feature sensitivity problem in online marketing using different real-world datasets, where the perturbation of some key features will seriously affect the performance of the uplift model and even cause the opposite trend. To solve the above problem, we propose a novel robustness-enhanced uplift modeling framework with adversarial feature desensitization (RUAD). Specifically, our RUAD can more effectively alleviate the feature sensitivity of the uplift model through two customized modules, including a feature selection module with joint multi-label modeling to identify a key subset from the input features and an adversarial feature desensitization module using adversarial training and soft interpolation operations to enhance the robustness of the model against this selected subset of features. Finally, we conduct extensive experiments on a public dataset and a real product dataset to verify the effectiveness of our RUAD in online marketing. In addition, we also demonstrate the robustness of our RUAD to the feature sensitivity, as well as the compatibility with different uplift models.
Large Language Models as Topological Structure Enhancers for Text-Attributed Graphs
Sun, Shengyin, Ren, Yuxiang, Ma, Chen, Zhang, Xuecang
The latest advancements in large language models (LLMs) have revolutionized the field of natural language processing (NLP). Inspired by the success of LLMs in NLP tasks, some recent work has begun investigating the potential of applying LLMs in graph learning tasks. However, most of the existing work focuses on utilizing LLMs as powerful node feature augmenters, leaving employing LLMs to enhance graph topological structures an understudied problem. In this work, we explore how to leverage the information retrieval and text generation capabilities of LLMs to refine/enhance the topological structure of text-attributed graphs (TAGs) under the node classification setting. First, we propose using LLMs to help remove unreliable edges and add reliable ones in the TAG. Specifically, we first let the LLM output the semantic similarity between node attributes through delicate prompt designs, and then perform edge deletion and edge addition based on the similarity. Second, we propose using pseudo-labels generated by the LLM to improve graph topology, that is, we introduce the pseudo-label propagation as a regularization to guide the graph neural network (GNN) in learning proper edge weights. Finally, we incorporate the two aforementioned LLM-based methods for graph topological refinement into the process of GNN training, and perform extensive experiments on four real-world datasets. The experimental results demonstrate the effectiveness of LLM-based graph topology refinement (achieving a 0.15%--2.47% performance gain on public benchmarks).
Towards Hybrid-grained Feature Interaction Selection for Deep Sparse Network
Lyu, Fuyuan, Tang, Xing, Liu, Dugang, Ma, Chen, Luo, Weihong, Chen, Liang, He, Xiuqiang, Liu, Xue
Deep sparse networks are widely investigated as a neural network architecture for prediction tasks with high-dimensional sparse features, with which feature interaction selection is a critical component. While previous methods primarily focus on how to search feature interaction in a coarse-grained space, less attention has been given to a finer granularity. In this work, we introduce a hybrid-grained feature interaction selection approach that targets both feature field and feature value for deep sparse networks. To explore such expansive space, we propose a decomposed space which is calculated on the fly. We then develop a selection algorithm called OptFeature, which efficiently selects the feature interaction from both the feature field and the feature value simultaneously. Results from experiments on three large real-world benchmark datasets demonstrate that OptFeature performs well in terms of accuracy and efficiency. Additional studies support the feasibility of our method.
A Survey on Large Language Model based Autonomous Agents
Wang, Lei, Ma, Chen, Feng, Xueyang, Zhang, Zeyu, Yang, Hao, Zhang, Jingsen, Chen, Zhiyuan, Tang, Jiakai, Chen, Xu, Lin, Yankai, Zhao, Wayne Xin, Wei, Zhewei, Wen, Ji-Rong
Autonomous agents have long been a prominent research focus in both academic and industry communities. Previous research in this field often focuses on training agents with limited knowledge within isolated environments, which diverges significantly from human learning processes, and thus makes the agents hard to achieve human-like decisions. Recently, through the acquisition of vast amounts of web knowledge, large language models (LLMs) have demonstrated remarkable potential in achieving human-level intelligence. This has sparked an upsurge in studies investigating LLM-based autonomous agents. In this paper, we present a comprehensive survey of these studies, delivering a systematic review of the field of LLM-based autonomous agents from a holistic perspective. More specifically, we first discuss the construction of LLM-based autonomous agents, for which we propose a unified framework that encompasses a majority of the previous work. Then, we present a comprehensive overview of the diverse applications of LLM-based autonomous agents in the fields of social science, natural science, and engineering. Finally, we delve into the evaluation strategies commonly used for LLM-based autonomous agents. Based on the previous studies, we also present several challenges and future directions in this field.
Dynamic Embedding Size Search with Minimum Regret for Streaming Recommender System
He, Bowei, He, Xu, Zhang, Renrui, Zhang, Yingxue, Tang, Ruiming, Ma, Chen
With the continuous increase of users and items, conventional recommender systems trained on static datasets can hardly adapt to changing environments. The high-throughput data requires the model to be updated in a timely manner for capturing the user interest dynamics, which leads to the emergence of streaming recommender systems. Due to the prevalence of deep learning-based recommender systems, the embedding layer is widely adopted to represent the characteristics of users, items, and other features in low-dimensional vectors. However, it has been proved that setting an identical and static embedding size is sub-optimal in terms of recommendation performance and memory cost, especially for streaming recommendations. To tackle this problem, we first rethink the streaming model update process and model the dynamic embedding size search as a bandit problem. Then, we analyze and quantify the factors that influence the optimal embedding sizes from the statistics perspective. Based on this, we propose the \textbf{D}ynamic \textbf{E}mbedding \textbf{S}ize \textbf{S}earch (\textbf{DESS}) method to minimize the embedding size selection regret on both user and item sides in a non-stationary manner. Theoretically, we obtain a sublinear regret upper bound superior to previous methods. Empirical results across two recommendation tasks on four public datasets also demonstrate that our approach can achieve better streaming recommendation performance with lower memory cost and higher time efficiency.
Gradient-based Bi-level Optimization for Deep Learning: A Survey
Chen, Can, Chen, Xi, Ma, Chen, Liu, Zixuan, Liu, Xue
Bi-level optimization, especially the gradient-based category, has been widely used in the deep learning community including hyperparameter optimization and meta-knowledge extraction. Bi-level optimization embeds one problem within another and the gradient-based category solves the outer-level task by computing the hypergradient, which is much more efficient than classical methods such as the evolutionary algorithm. In this survey, we first give a formal definition of the gradient-based bi-level optimization. Next, we delineate criteria to determine if a research problem is apt for bi-level optimization and provide a practical guide on structuring such problems into a bi-level optimization framework, a feature particularly beneficial for those new to this domain. More specifically, there are two formulations: the single-task formulation to optimize hyperparameters such as regularization parameters and the distilled data, and the multi-task formulation to extract meta-knowledge such as the model initialization. With a bi-level formulation, we then discuss four bi-level optimization solvers to update the outer variable including explicit gradient update, proxy update, implicit function update, and closed-form update. Finally, we wrap up the survey by highlighting two prospective future directions: (1) Effecctive Data Optimization for Science examined through the lens of task formulation.