Müller, Klaus-Robert
Automated Dissipation Control for Turbulence Simulation with Shell Models
Dombrowski, Ann-Kathrin, Müller, Klaus-Robert, Müller, Wolf Christian
The application of machine learning (ML) techniques, especially neural networks, has seen tremendous success at processing images and language. This is because we often lack formal models to understand visual and audio input, so here neural networks can unfold their abilities as they can model solely from data. In the field of physics we typically have models that describe natural processes reasonably well on a formal level. Nonetheless, in recent years, ML has also proven useful in these realms, be it by speeding up numerical simulations or by improving accuracy. One important and so far unsolved problem in classical physics is understanding turbulent fluid motion. In this work we construct a strongly simplified representation of turbulence by using the Gledzer-Ohkitani-Yamada (GOY) shell model. With this system we intend to investigate the potential of ML-supported and physics-constrained small-scale turbulence modelling. Instead of standard supervised learning we propose an approach that aims to reconstruct statistical properties of turbulence such as the self-similar inertial-range scaling, where we could achieve encouraging experimental results. Furthermore we discuss pitfalls when combining machine learning with differential equations.
Super-resolution in Molecular Dynamics Trajectory Reconstruction with Bi-Directional Neural Networks
Winkler, Ludwig, Müller, Klaus-Robert, Sauceda, Huziel E.
Molecular dynamics simulations are a cornerstone in science, allowing to investigate from the system's thermodynamics to analyse intricate molecular interactions. In general, to create extended molecular trajectories can be a computationally expensive process, for example, when running $ab-initio$ simulations. Hence, repeating such calculations to either obtain more accurate thermodynamics or to get a higher resolution in the dynamics generated by a fine-grained quantum interaction can be time- and computationally-consuming. In this work, we explore different machine learning (ML) methodologies to increase the resolution of molecular dynamics trajectories on-demand within a post-processing step. As a proof of concept, we analyse the performance of bi-directional neural networks such as neural ODEs, Hamiltonian networks, recurrent neural networks and LSTMs, as well as the uni-directional variants as a reference, for molecular dynamics simulations (here: the MD17 dataset). We have found that Bi-LSTMs are the best performing models; by utilizing the local time-symmetry of thermostated trajectories they can even learn long-range correlations and display high robustness to noisy dynamics across molecular complexity. Our models can reach accuracies of up to 10$^{-4}$ angstroms in trajectory interpolation, while faithfully reconstructing several full cycles of unseen intricate high-frequency molecular vibrations, rendering the comparison between the learned and reference trajectories indistinguishable. The results reported in this work can serve (1) as a baseline for larger systems, as well as (2) for the construction of better MD integrators.
Toward Explainable AI for Regression Models
Letzgus, Simon, Wagner, Patrick, Lederer, Jonas, Samek, Wojciech, Müller, Klaus-Robert, Montavon, Gregoire
In addition to the impressive predictive power of machine learning (ML) models, more recently, explanation methods have emerged that enable an interpretation of complex non-linear learning models such as deep neural networks. Gaining a better understanding is especially important e.g. for safety-critical ML applications or medical diagnostics etc. While such Explainable AI (XAI) techniques have reached significant popularity for classifiers, so far little attention has been devoted to XAI for regression models (XAIR). In this review, we clarify the fundamental conceptual differences of XAI for regression and classification tasks, establish novel theoretical insights and analysis for XAIR, provide demonstrations of XAIR on genuine practical regression problems, and finally discuss the challenges remaining for the field.
Efficient Hierarchical Bayesian Inference for Spatio-temporal Regression Models in Neuroimaging
Hashemi, Ali, Gao, Yijing, Cai, Chang, Ghosh, Sanjay, Müller, Klaus-Robert, Nagarajan, Srikantan S., Haufe, Stefan
Several problems in neuroimaging and beyond require inference on the parameters of multi-task sparse hierarchical regression models. Examples include M/EEG inverse problems, neural encoding models for task-based fMRI analyses, and climate science. In these domains, both the model parameters to be inferred and the measurement noise may exhibit a complex spatio-temporal structure. Existing work either neglects the temporal structure or leads to computationally demanding inference schemes. Overcoming these limitations, we devise a novel flexible hierarchical Bayesian framework within which the spatio-temporal dynamics of model parameters and noise are modeled to have Kronecker product covariance structure. Inference in our framework is based on majorization-minimization optimization and has guaranteed convergence properties. Our highly efficient algorithms exploit the intrinsic Riemannian geometry of temporal autocovariance matrices. For stationary dynamics described by Toeplitz matrices, the theory of circulant embeddings is employed. We prove convex bounding properties and derive update rules of the resulting algorithms. On both synthetic and real neural data from M/EEG, we demonstrate that our methods lead to improved performance.
Scrutinizing XAI using linear ground-truth data with suppressor variables
Wilming, Rick, Budding, Céline, Müller, Klaus-Robert, Haufe, Stefan
Machine learning (ML) is increasingly often used to inform high-stakes decisions. As complex ML models (e.g., deep neural networks) are often considered black boxes, a wealth of procedures has been developed to shed light on their inner workings and the ways in which their predictions come about, defining the field of 'explainable AI' (XAI). Saliency methods rank input features according to some measure of 'importance'. Such methods are difficult to validate since a formal definition of feature importance is, thus far, lacking. It has been demonstrated that some saliency methods can highlight features that have no statistical association with the prediction target (suppressor variables). To avoid misinterpretations due to such behavior, we propose the actual presence of such an association as a necessary condition and objective preliminary definition for feature importance. We carefully crafted a ground-truth dataset in which all statistical dependencies are well-defined and linear, serving as a benchmark to study the problem of suppressor variables. We evaluate common explanation methods including LRP, DTD, PatternNet, PatternAttribution, LIME, Anchors, SHAP, and permutation-based methods with respect to our objective definition. We show that most of these methods are unable to distinguish important features from suppressors in this setting.
Inverse design of 3d molecular structures with conditional generative neural networks
Gebauer, Niklas W. A., Gastegger, Michael, Hessmann, Stefaan S. P., Müller, Klaus-Robert, Schütt, Kristof T.
The rational design of molecules with desired properties is a long-standing challenge in chemistry. Generative neural networks have emerged as a powerful approach to sample novel molecules from a learned distribution. Here, we propose a conditional generative neural network for 3d molecular structures with specified structural and chemical properties. This approach is agnostic to chemical bonding and enables targeted sampling of novel molecules from conditional distributions, even in domains where reference calculations are sparse. We demonstrate the utility of our method for inverse design by generating molecules with specified composition or motifs, discovering particularly stable molecules, and jointly targeting multiple electronic properties beyond the training regime.
Explaining Bayesian Neural Networks
Bykov, Kirill, Höhne, Marina M. -C., Creosteanu, Adelaida, Müller, Klaus-Robert, Klauschen, Frederick, Nakajima, Shinichi, Kloft, Marius
To make advanced learning machines such as Deep Neural Networks (DNNs) more transparent in decision making, explainable AI (XAI) aims to provide interpretations of DNNs' predictions. These interpretations are usually given in the form of heatmaps, each one illustrating relevant patterns regarding the prediction for a given instance. Bayesian approaches such as Bayesian Neural Networks (BNNs) so far have a limited form of transparency (model transparency) already built-in through their prior weight distribution, but notably, they lack explanations of their predictions for given instances. In this work, we bring together these two perspectives of transparency into a holistic explanation framework for explaining BNNs. Within the Bayesian framework, the network weights follow a probability distribution. Hence, the standard (deterministic) prediction strategy of DNNs extends in BNNs to a predictive distribution, and thus the standard explanation extends to an explanation distribution. Exploiting this view, we uncover that BNNs implicitly employ multiple heterogeneous prediction strategies. While some of these are inherited from standard DNNs, others are revealed to us by considering the inherent uncertainty in BNNs. Our quantitative and qualitative experiments on toy/benchmark data and real-world data from pathology show that the proposed approach of explaining BNNs can lead to more effective and insightful explanations.
Learning Domain Invariant Representations by Joint Wasserstein Distance Minimization
Andéol, Léo, Kawakami, Yusei, Wada, Yuichiro, Kanamori, Takafumi, Müller, Klaus-Robert, Montavon, Grégoire
Domain shifts in the training data are common in practical applications of machine learning, they occur for instance when the data is coming from different sources. Ideally, a ML model should work well independently of these shifts, for example, by learning a domain-invariant representation. Moreover, privacy concerns regarding the source also require a domain-invariant representation. In this work, we provide theoretical results that link domain invariant representations -- measured by the Wasserstein distance on the joint distributions -- to a practical semi-supervised learning objective based on a cross-entropy classifier and a novel domain critic. Quantitative experiments demonstrate that the proposed approach is indeed able to practically learn such an invariant representation (between two domains), and the latter also supports models with higher predictive accuracy on both domains, comparing favorably to existing techniques.
Machine learning of solvent effects on molecular spectra and reactions
Gastegger, Michael, Schütt, Kristof T., Müller, Klaus-Robert
Fast and accurate simulation of complex chemical systems in environments such as solutions is a long standing challenge in theoretical chemistry. In recent years, machine learning has extended the boundaries of quantum chemistry by providing highly accurate and efficient surrogate models of electronic structure theory, which previously have been out of reach for conventional approaches. Those models have long been restricted to closed molecular systems without accounting for environmental influences, such as external electric and magnetic fields or solvent effects. Here, we introduce the deep neural network FieldSchNet for modeling the interaction of molecules with arbitrary external fields. FieldSchNet offers access to a wealth of molecular response properties, enabling it to simulate a wide range of molecular spectra, such as infrared, Raman and nuclear magnetic resonance. Beyond that, it is able to describe implicit and explicit molecular environments, operating as a polarizable continuum model for solvation or in a quantum mechanics / molecular mechanics setup. We employ FieldSchNet to study the influence of solvent effects on molecular spectra and a Claisen rearrangement reaction. Based on these results, we use FieldSchNet to design an external environment capable of lowering the activation barrier of the rearrangement reaction significantly, demonstrating promising venues for inverse chemical design.
Machine Learning Force Fields
Unke, Oliver T., Chmiela, Stefan, Sauceda, Huziel E., Gastegger, Michael, Poltavsky, Igor, Schütt, Kristof T., Tkatchenko, Alexandre, Müller, Klaus-Robert
In recent years, the use of Machine Learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based force fields (FFs), with the aim to narrow the gap between the accuracy of ab initio methods and the efficiency of classical FFs. The key idea is to learn the statistical relation between chemical structure and potential energy without relying on a preconceived notion of fixed chemical bonds or knowledge about the relevant interactions. Such universal ML approximations are in principle only limited by the quality and quantity of the reference data used to train them. This review gives an overview of applications of ML-FFs and the chemical insights that can be obtained from them. The core concepts underlying ML-FFs are described in detail and a step-by-step guide for constructing and testing them from scratch is given. The text concludes with a discussion of the challenges that remain to be overcome by the next generation of ML-FFs.