Müller, Henning
3-D Image-to-Image Fusion in Lightsheet Microscopy by Two-Step Adversarial Network: Contribution to the FuseMyCells Challenge
Wodzinski, Marek, Müller, Henning
Lightsheet microscopy is a powerful 3-D imaging technique that addresses limitations of traditional optical and confocal microscopy but suffers from a low penetration depth and reduced image quality at greater depths. Multiview lightsheet microscopy improves 3-D resolution by combining multiple views but simultaneously increasing the complexity and the photon budget, leading to potential photobleaching and phototoxicity. The FuseMyCells challenge, organized in conjunction with the IEEE ISBI 2025 conference, aims to benchmark deep learning-based solutions for fusing high-quality 3-D volumes from single 3-D views, potentially simplifying procedures and conserving the photon budget. In this work, we propose a contribution to the FuseMyCells challenge based on a two-step procedure. The first step processes a downsampled version of the image to capture the entire region of interest, while the second step uses a patch-based approach for high-resolution inference, incorporating adversarial loss to enhance visual outcomes. This method addresses challenges related to high data resolution, the necessity of global context, and the preservation of high-frequency details. Experimental results demonstrate the effectiveness of our approach, highlighting its potential to improve 3-D image fusion quality and extend the capabilities of lightsheet microscopy. The average SSIM for the nucleus and membranes is greater than 0.85 and 0.91, respectively.
Automatic Labels are as Effective as Manual Labels in Biomedical Images Classification with Deep Learning
Marini, Niccolò, Marchesin, Stefano, Ferris, Lluis Borras, Püttmann, Simon, Wodzinski, Marek, Fratti, Riccardo, Podareanu, Damian, Caputo, Alessandro, Boytcheva, Svetla, Vatrano, Simona, Fraggetta, Filippo, Nagtegaal, Iris, Silvello, Gianmaria, Atzori, Manfredo, Müller, Henning
The increasing availability of biomedical data is helping to design more robust deep learning (DL) algorithms to analyze biomedical samples. Currently, one of the main limitations to train DL algorithms to perform a specific task is the need for medical experts to label data. Automatic methods to label data exist, however automatic labels can be noisy and it is not completely clear when automatic labels can be adopted to train DL models. This paper aims to investigate under which circumstances automatic labels can be adopted to train a DL model on the classification of Whole Slide Images (WSI). The analysis involves multiple architectures, such as Convolutional Neural Networks (CNN) and Vision Transformer (ViT), and over 10000 WSIs, collected from three use cases: celiac disease, lung cancer and colon cancer, which one including respectively binary, multiclass and multilabel data. The results allow identifying 10% as the percentage of noisy labels that lead to train competitive models for the classification of WSIs. Therefore, an algorithm generating automatic labels needs to fit this criterion to be adopted. The application of the Semantic Knowledge Extractor Tool (SKET) algorithm to generate automatic labels leads to performance comparable to the one obtained with manual labels, since it generates a percentage of noisy labels between 2-5%. Automatic labels are as effective as manual ones, reaching solid performance comparable to the one obtained training models with manual labels.
ROCOv2: Radiology Objects in COntext Version 2, an Updated Multimodal Image Dataset
Rückert, Johannes, Bloch, Louise, Brüngel, Raphael, Idrissi-Yaghir, Ahmad, Schäfer, Henning, Schmidt, Cynthia S., Koitka, Sven, Pelka, Obioma, Abacha, Asma Ben, de Herrera, Alba G. Seco, Müller, Henning, Horn, Peter A., Nensa, Felix, Friedrich, Christoph M.
Automated medical image analysis systems often require large amounts of training data with high quality labels, which are difficult and time consuming to generate. This paper introduces Radiology Object in COntext version 2 (ROCOv2), a multimodal dataset consisting of radiological images and associated medical concepts and captions extracted from the PMC Open Access subset. It is an updated version of the ROCO dataset published in 2018, and adds 35,705 new images added to PMC since 2018. It further provides manually curated concepts for imaging modalities with additional anatomical and directional concepts for X-rays. The dataset consists of 79,789 images and has been used, with minor modifications, in the concept detection and caption prediction tasks of ImageCLEFmedical Caption 2023. The dataset is suitable for training image annotation models based on image-caption pairs, or for multi-label image classification using Unified Medical Language System (UMLS) concepts provided with each image. In addition, it can serve for pre-training of medical domain models, and evaluation of deep learning models for multi-task learning.
Improving Quality Control of Whole Slide Images by Explicit Artifact Augmentation
Jurgas, Artur, Wodzinski, Marek, D'Amato, Marina, van der Laak, Jeroen, Atzori, Manfredo, Müller, Henning
Overcoming this challenge requires developing quality control algorithms, that are hindered by the limited availability of relevant annotated data in histopathology. The manual annotation of ground-truth for artifact detection methods is expensive and time-consuming. This work addresses the issue by proposing a method dedicated to augmenting whole slide images with artifacts. The tool seamlessly generates and blends artifacts from an external library to a given histopathology dataset. The augmented datasets are then utilized to train artifact classification methods. The evaluation shows their usefulness in classification of the artifacts, where they show an improvement from 0.10 to 0.01 AUROC depending on the artifact type. The framework, model, weights, and ground-truth annotations are freely released to facilitate open science and reproducible research.
Patch-Based Encoder-Decoder Architecture for Automatic Transmitted Light to Fluorescence Imaging Transition: Contribution to the LightMyCells Challenge
Wodzinski, Marek, Müller, Henning
Automatic prediction of fluorescently labeled organelles from label-free transmitted light input images is an important, yet difficult task. The traditional way to obtain fluorescence images is related to performing biochemical labeling which is time-consuming and costly. Therefore, an automatic algorithm to perform the task based on the label-free transmitted light microscopy could be strongly beneficial. The importance of the task motivated researchers from the France-BioImaging to organize the LightMyCells challenge where the goal is to propose an algorithm that automatically predicts the fluorescently labeled nucleus, mitochondria, tubulin, and actin, based on the input consisting of bright field, phase contrast, or differential interference contrast microscopic images. In this work, we present the contribution of the AGHSSO team based on a carefully prepared and trained encoder-decoder deep neural network that achieves a considerable score in the challenge, being placed among the best-performing teams.
A comparative study on wearables and single-camera video for upper-limb out-of-thelab activity recognition with different deep learning architectures
Martínez-Zarzuela, Mario, González-Ortega, David, Antón-Rodríguez, Míriam, Díaz-Pernas, Francisco Javier, Müller, Henning, Simón-Martínez, Cristina
Introduction: The use of a wide range of computer vision solutions, and more recently high-end Inertial Measurement Units (IMU) have become increasingly popular for assessing human physical activity in clinical and research settings [1]. Nevertheless, to increase the feasibility of patient tracking in out-of-the-lab settings, it is necessary to use a reduced number of devices for movement acquisition. Promising solutions in this context are IMU-based wearables and single camera systems [2]. Additionally, the development of machine learning systems able to recognize and digest clinically relevant data in-the-wild is needed, and therefore determining the ideal input to those is crucial [3]. Research question: For upper-limb activity recognition out-of-the-lab, do wearables or single camera offer better performance?
TopCoW: Benchmarking Topology-Aware Anatomical Segmentation of the Circle of Willis (CoW) for CTA and MRA
Yang, Kaiyuan, Musio, Fabio, Ma, Yihui, Juchler, Norman, Paetzold, Johannes C., Al-Maskari, Rami, Höher, Luciano, Li, Hongwei Bran, Hamamci, Ibrahim Ethem, Sekuboyina, Anjany, Shit, Suprosanna, Huang, Houjing, Waldmannstetter, Diana, Kofler, Florian, Navarro, Fernando, Menten, Martin, Ezhov, Ivan, Rueckert, Daniel, Vos, Iris, Ruigrok, Ynte, Velthuis, Birgitta, Kuijf, Hugo, Hämmerli, Julien, Wurster, Catherine, Bijlenga, Philippe, Westphal, Laura, Bisschop, Jeroen, Colombo, Elisa, Baazaoui, Hakim, Makmur, Andrew, Hallinan, James, Wiestler, Bene, Kirschke, Jan S., Wiest, Roland, Montagnon, Emmanuel, Letourneau-Guillon, Laurent, Galdran, Adrian, Galati, Francesco, Falcetta, Daniele, Zuluaga, Maria A., Lin, Chaolong, Zhao, Haoran, Zhang, Zehan, Ra, Sinyoung, Hwang, Jongyun, Park, Hyunjin, Chen, Junqiang, Wodzinski, Marek, Müller, Henning, Shi, Pengcheng, Liu, Wei, Ma, Ting, Yalçin, Cansu, Hamadache, Rachika E., Salvi, Joaquim, Llado, Xavier, Estrada, Uma Maria Lal-Trehan, Abramova, Valeriia, Giancardo, Luca, Oliver, Arnau, Liu, Jialu, Huang, Haibin, Cui, Yue, Lin, Zehang, Liu, Yusheng, Zhu, Shunzhi, Patel, Tatsat R., Tutino, Vincent M., Orouskhani, Maysam, Wang, Huayu, Mossa-Basha, Mahmud, Zhu, Chengcheng, Rokuss, Maximilian R., Kirchhoff, Yannick, Disch, Nico, Holzschuh, Julius, Isensee, Fabian, Maier-Hein, Klaus, Sato, Yuki, Hirsch, Sven, Wegener, Susanne, Menze, Bjoern
The Circle of Willis (CoW) is an important network of arteries connecting major circulations of the brain. Its vascular architecture is believed to affect the risk, severity, and clinical outcome of serious neuro-vascular diseases. However, characterizing the highly variable CoW anatomy is still a manual and time-consuming expert task. The CoW is usually imaged by two angiographic imaging modalities, magnetic resonance angiography (MRA) and computed tomography angiography (CTA), but there exist limited public datasets with annotations on CoW anatomy, especially for CTA. Therefore we organized the TopCoW Challenge in 2023 with the release of an annotated CoW dataset. The TopCoW dataset was the first public dataset with voxel-level annotations for thirteen possible CoW vessel components, enabled by virtual-reality (VR) technology. It was also the first large dataset with paired MRA and CTA from the same patients. TopCoW challenge formalized the CoW characterization problem as a multiclass anatomical segmentation task with an emphasis on topological metrics. We invited submissions worldwide for the CoW segmentation task, which attracted over 140 registered participants from four continents. The top performing teams managed to segment many CoW components to Dice scores around 90%, but with lower scores for communicating arteries and rare variants. There were also topological mistakes for predictions with high Dice scores. Additional topological analysis revealed further areas for improvement in detecting certain CoW components and matching CoW variant topology accurately. TopCoW represented a first attempt at benchmarking the CoW anatomical segmentation task for MRA and CTA, both morphologically and topologically.
Automatic Aorta Segmentation with Heavily Augmented, High-Resolution 3-D ResUNet: Contribution to the SEG.A Challenge
Wodzinski, Marek, Müller, Henning
Automatic aorta segmentation from 3-D medical volumes is an important yet difficult task. Several factors make the problem challenging, e.g. the possibility of aortic dissection or the difficulty with segmenting and annotating the small branches. This work presents a contribution by the MedGIFT team to the SEG.A challenge organized during the MICCAI 2023 conference. We propose a fully automated algorithm based on deep encoder-decoder architecture. The main assumption behind our work is that data preprocessing and augmentation are much more important than the deep architecture, especially in low data regimes. Therefore, the solution is based on a variant of traditional convolutional U-Net. The proposed solution achieved a Dice score above 0.9 for all testing cases with the highest stability among all participants. The method scored 1st, 4th, and 3rd in terms of the clinical evaluation, quantitative results, and volumetric meshing quality, respectively. We freely release the source code, pretrained model, and provide access to the algorithm on the Grand-Challenge platform.
Uncovering Unique Concept Vectors through Latent Space Decomposition
Graziani, Mara, Mahony, Laura O', Nguyen, An-Phi, Müller, Henning, Andrearczyk, Vincent
Interpreting the inner workings of deep learning models is crucial for establishing trust and ensuring model safety. Concept-based explanations have emerged as a superior approach that is more interpretable than feature attribution estimates such as pixel saliency. However, defining the concepts for the interpretability analysis biases the explanations by the user's expectations on the concepts. To address this, we propose a novel post-hoc unsupervised method that automatically uncovers the concepts learned by deep models during training. By decomposing the latent space of a layer in singular vectors and refining them by unsupervised clustering, we uncover concept vectors aligned with directions of high variance that are relevant to the model prediction, and that point to semantically distinct concepts. Our extensive experiments reveal that the majority of our concepts are readily understandable to humans, exhibit coherency, and bear relevance to the task at hand. Moreover, we showcase the practical utility of our method in dataset exploration, where our concept vectors successfully identify outlier training samples affected by various confounding factors. This novel exploration technique has remarkable versatility to data types and model architectures and it will facilitate the identification of biases and the discovery of sources of error within training data.
Evaluating Post-hoc Interpretability with Intrinsic Interpretability
Amorim, José Pereira, Abreu, Pedro Henriques, Santos, João, Müller, Henning
Despite Convolutional Neural Networks having reached human-level performance in some medical tasks, their clinical use has been hindered by their lack of interpretability. Two major interpretability strategies have been proposed to tackle this problem: post-hoc methods and intrinsic methods. Although there are several post-hoc methods to interpret DL models, there is significant variation between the explanations provided by each method, and it a difficult to validate them due to the lack of ground-truth. To address this challenge, we adapted the intrinsical interpretable ProtoPNet for the context of histopathology imaging and compared the attribution maps produced by it and the saliency maps made by post-hoc methods. To evaluate the similarity between saliency map methods and attribution maps we adapted 10 saliency metrics from the saliency model literature, and used the breast cancer metastases detection dataset PatchCamelyon with 327,680 patches of histopathological images of sentinel lymph node sections to validate the proposed approach. Overall, SmoothGrad and Occlusion were found to have a statistically bigger overlap with ProtoPNet while Deconvolution and Lime have been found to have the least.