Luo, Yadan
Don't Shake the Wheel: Momentum-Aware Planning in End-to-End Autonomous Driving
Song, Ziying, Jia, Caiyan, Liu, Lin, Pan, Hongyu, Zhang, Yongchang, Wang, Junming, Zhang, Xingyu, Xu, Shaoqing, Yang, Lei, Luo, Yadan
End-to-end autonomous driving frameworks enable seamless integration of perception and planning but often rely on one-shot trajectory prediction, which may lead to unstable control and vulnerability to occlusions in single-frame perception. To address this, we propose the Momentum-Aware Driving (MomAD) framework, which introduces trajectory momentum and perception momentum to stabilize and refine trajectory predictions. MomAD comprises two core components: (1) Topological Trajectory Matching (TTM) employs Hausdorff Distance to select the optimal planning query that aligns with prior paths to ensure coherence;(2) Momentum Planning Interactor (MPI) cross-attends the selected planning query with historical queries to expand static and dynamic perception files. This enriched query, in turn, helps regenerate long-horizon trajectory and reduce collision risks. To mitigate noise arising from dynamic environments and detection errors, we introduce robust instance denoising during training, enabling the planning model to focus on critical signals and improve its robustness. We also propose a novel Trajectory Prediction Consistency (TPC) metric to quantitatively assess planning stability. Experiments on the nuScenes dataset demonstrate that MomAD achieves superior long-term consistency (>=3s) compared to SOTA methods. Moreover, evaluations on the curated Turning-nuScenes shows that MomAD reduces the collision rate by 26% and improves TPC by 0.97m (33.45%) over a 6s prediction horizon, while closedloop on Bench2Drive demonstrates an up to 16.3% improvement in success rate.
Provable Ordering and Continuity in Vision-Language Pretraining for Generalizable Embodied Agents
Zhang, Zhizhen, Zhu, Lei, Fang, Zhen, Huang, Zi, Luo, Yadan
Pre-training vision-language representations on human action videos has emerged as a promising approach to reduce reliance on large-scale expert demonstrations for training embodied agents. However, prior methods often employ time contrastive learning based on goal-reaching heuristics, progressively aligning language instructions from the initial to the final frame. This overemphasis on future frames can result in erroneous vision-language associations, as actions may terminate early or include irrelevant moments in the end. To address this issue, we propose Action Temporal Coherence Learning (AcTOL) to learn ordered and continuous vision-language representations without rigid goal-based constraint. AcTOL treats a video as a continuous trajectory where it (1) contrasts semantic differences between frames to reflect their natural ordering, and (2) imposes a local Brownian bridge constraint to ensure smooth transitions across intermediate frames. Extensive imitation learning experiments across varying numbers of demonstrations show that the pretrained features significantly enhance downstream manipulation tasks by up to 49% with high robustness to different linguistic styles of instructions, offering a viable pathway toward generalized embodied agents. The source code is included in the supplementary material for reference.
PolaFormer: Polarity-aware Linear Attention for Vision Transformers
Meng, Weikang, Luo, Yadan, Li, Xin, Jiang, Dongmei, Zhang, Zheng
Linear attention has emerged as a promising alternative to softmax-based attention, leveraging kernelized feature maps to reduce complexity from quadratic to linear in sequence length. However, the non-negative constraint on feature maps and the relaxed exponential function used in approximation lead to significant information loss compared to the original query-key dot products, resulting in less discriminative attention maps with higher entropy. To address the missing interactions driven by negative values in query-key pairs, we propose a polarity-aware linear attention mechanism that explicitly models both same-signed and opposite-signed query-key interactions, ensuring comprehensive coverage of relational information. Furthermore, to restore the spiky properties of attention maps, we provide a theoretical analysis proving the existence of a class of element-wise functions (with positive first and second derivatives) that can reduce entropy in the attention distribution. For simplicity, and recognizing the distinct contributions of each dimension, we employ a learnable power function for rescaling, allowing strong and weak attention signals to be effectively separated. Extensive experiments demonstrate that the proposed PolaFormer improves performance on various vision tasks, enhancing both expressiveness and efficiency by up to 4.6%.
Is Less More? Exploring Token Condensation as Training-free Adaptation for CLIP
Wang, Zixin, Gong, Dong, Wang, Sen, Huang, Zi, Luo, Yadan
Contrastive language-image pre-training (CLIP) has shown remarkable generalization ability in image classification. However, CLIP sometimes encounters performance drops on downstream datasets during zero-shot inference. Test-time adaptation methods attempt to mitigate this by adjusting normalization layers or tuning context prompts with large batch sizes and extensive augmentations; yet, these methods are computationally intensive. This raises an important question: Is there a training-free approach that can efficiently address CLIP's performance drop in such cases? To explore this, we benchmark token condensation techniques, originally designed to enhance the efficiency of vision transformers, on CLIP zero-shot inference tasks. We observe that although token condensation may compromise in-domain accuracy, it surprisingly enhances CLIP's performance on certain cross-dataset benchmarks. This motivates two key inquiries: (1) Can token condensation serve as a "free-lunch" solution for CLIP zero-shot inference? (2) What criteria should guide condensation -- how can essential tokens be identified and redundant ones eliminated? To address these questions, we propose Token Condensation as Adaptation (TCA), a training-free adaptation method for CLIP by pruning class-irrelevant visual tokens while merging class-ambiguous tokens. As the first approach for CLIP's token efficiency, TCA demonstrates superior performance across cross-dataset tasks, achieving up to a 21.4\% improvement over the strongest baseline while reducing GFLOPs by 12.2\% to 48.9\%, with minimized hyperparameter dependency.
Find n' Propagate: Open-Vocabulary 3D Object Detection in Urban Environments
Etchegaray, Djamahl, Huang, Zi, Harada, Tatsuya, Luo, Yadan
In this work, we tackle the limitations of current LiDAR-based 3D object detection systems, which are hindered by a restricted class vocabulary and the high costs associated with annotating new object classes. Our exploration of open-vocabulary (OV) learning in urban environments aims to capture novel instances using pre-trained vision-language models (VLMs) with multi-sensor data. We design and benchmark a set of four potential solutions as baselines, categorizing them into either top-down or bottom-up approaches based on their input data strategies. While effective, these methods exhibit certain limitations, such as missing novel objects in 3D box estimation or applying rigorous priors, leading to biases towards objects near the camera or of rectangular geometries. To overcome these limitations, we introduce a universal \textsc{Find n' Propagate} approach for 3D OV tasks, aimed at maximizing the recall of novel objects and propagating this detection capability to more distant areas thereby progressively capturing more. In particular, we utilize a greedy box seeker to search against 3D novel boxes of varying orientations and depth in each generated frustum and ensure the reliability of newly identified boxes by cross alignment and density ranker. Additionally, the inherent bias towards camera-proximal objects is alleviated by the proposed remote simulator, which randomly diversifies pseudo-labeled novel instances in the self-training process, combined with the fusion of base samples in the memory bank. Extensive experiments demonstrate a 53% improvement in novel recall across diverse OV settings, VLMs, and 3D detectors. Notably, we achieve up to a 3.97-fold increase in Average Precision (AP) for novel object classes. The source code is made available at https://github.com/djamahl99/findnpropagate.
DPO: Dual-Perturbation Optimization for Test-time Adaptation in 3D Object Detection
Chen, Zhuoxiao, Wang, Zixin, Wang, Sen, Huang, Zi, Luo, Yadan
LiDAR-based 3D object detection has seen impressive advances in recent times. However, deploying trained 3D detectors in the real world often yields unsatisfactory performance when the distribution of the test data significantly deviates from the training data due to different weather conditions, object sizes, \textit{etc}. A key factor in this performance degradation is the diminished generalizability of pre-trained models, which creates a sharp loss landscape during training. Such sharpness, when encountered during testing, can precipitate significant performance declines, even with minor data variations. To address the aforementioned challenges, we propose \textbf{dual-perturbation optimization (DPO)} for \textbf{\underline{T}est-\underline{t}ime \underline{A}daptation in \underline{3}D \underline{O}bject \underline{D}etection (TTA-3OD)}. We minimize the sharpness to cultivate a flat loss landscape to ensure model resiliency to minor data variations, thereby enhancing the generalization of the adaptation process. To fully capture the inherent variability of the test point clouds, we further introduce adversarial perturbation to the input BEV features to better simulate the noisy test environment. As the dual perturbation strategy relies on trustworthy supervision signals, we utilize a reliable Hungarian matcher to filter out pseudo-labels sensitive to perturbations. Additionally, we introduce early Hungarian cutoff to avoid error accumulation from incorrect pseudo-labels by halting the adaptation process. Extensive experiments across three types of transfer tasks demonstrate that the proposed DPO significantly surpasses previous state-of-the-art approaches, specifically on Waymo $\rightarrow$ KITTI, outperforming the most competitive baseline by 57.72\% in $\text{AP}_\text{3D}$ and reaching 91\% of the fully supervised upper bound.
The RoboDrive Challenge: Drive Anytime Anywhere in Any Condition
Kong, Lingdong, Xie, Shaoyuan, Hu, Hanjiang, Niu, Yaru, Ooi, Wei Tsang, Cottereau, Benoit R., Ng, Lai Xing, Ma, Yuexin, Zhang, Wenwei, Pan, Liang, Chen, Kai, Liu, Ziwei, Qiu, Weichao, Zhang, Wei, Cao, Xu, Lu, Hao, Chen, Ying-Cong, Kang, Caixin, Zhou, Xinning, Ying, Chengyang, Shang, Wentao, Wei, Xingxing, Dong, Yinpeng, Yang, Bo, Jiang, Shengyin, Ma, Zeliang, Ji, Dengyi, Li, Haiwen, Huang, Xingliang, Tian, Yu, Kou, Genghua, Jia, Fan, Liu, Yingfei, Wang, Tiancai, Li, Ying, Hao, Xiaoshuai, Yang, Yifan, Zhang, Hui, Wei, Mengchuan, Zhou, Yi, Zhao, Haimei, Zhang, Jing, Li, Jinke, He, Xiao, Cheng, Xiaoqiang, Zhang, Bingyang, Zhao, Lirong, Ding, Dianlei, Liu, Fangsheng, Yan, Yixiang, Wang, Hongming, Ye, Nanfei, Luo, Lun, Tian, Yubo, Zuo, Yiwei, Cao, Zhe, Ren, Yi, Li, Yunfan, Liu, Wenjie, Wu, Xun, Mao, Yifan, Li, Ming, Liu, Jian, Liu, Jiayang, Qin, Zihan, Chu, Cunxi, Xu, Jialei, Zhao, Wenbo, Jiang, Junjun, Liu, Xianming, Wang, Ziyan, Li, Chiwei, Li, Shilong, Yuan, Chendong, Yang, Songyue, Liu, Wentao, Chen, Peng, Zhou, Bin, Wang, Yubo, Zhang, Chi, Sun, Jianhang, Chen, Hai, Yang, Xiao, Wang, Lizhong, Fu, Dongyi, Lin, Yongchun, Yang, Huitong, Li, Haoang, Luo, Yadan, Cheng, Xianjing, Xu, Yong
In the realm of autonomous driving, robust perception under out-of-distribution conditions is paramount for the safe deployment of vehicles. Challenges such as adverse weather, sensor malfunctions, and environmental unpredictability can severely impact the performance of autonomous systems. The 2024 RoboDrive Challenge was crafted to propel the development of driving perception technologies that can withstand and adapt to these real-world variabilities. Focusing on four pivotal tasks -- BEV detection, map segmentation, semantic occupancy prediction, and multi-view depth estimation -- the competition laid down a gauntlet to innovate and enhance system resilience against typical and atypical disturbances. This year's challenge consisted of five distinct tracks and attracted 140 registered teams from 93 institutes across 11 countries, resulting in nearly one thousand submissions evaluated through our servers. The competition culminated in 15 top-performing solutions, which introduced a range of innovative approaches including advanced data augmentation, multi-sensor fusion, self-supervised learning for error correction, and new algorithmic strategies to enhance sensor robustness. These contributions significantly advanced the state of the art, particularly in handling sensor inconsistencies and environmental variability. Participants, through collaborative efforts, pushed the boundaries of current technologies, showcasing their potential in real-world scenarios. Extensive evaluations and analyses provided insights into the effectiveness of these solutions, highlighting key trends and successful strategies for improving the resilience of driving perception systems. This challenge has set a new benchmark in the field, providing a rich repository of techniques expected to guide future research in this field.
ConjNorm: Tractable Density Estimation for Out-of-Distribution Detection
Peng, Bo, Luo, Yadan, Zhang, Yonggang, Li, Yixuan, Fang, Zhen
Post-hoc out-of-distribution (OOD) detection has garnered intensive attention in reliable machine learning. Many efforts have been dedicated to deriving score functions based on logits, distances, or rigorous data distribution assumptions to identify low-scoring OOD samples. Nevertheless, these estimate scores may fail to accurately reflect the true data density or impose impractical constraints. To provide a unified perspective on density-based score design, we propose a novel theoretical framework grounded in Bregman divergence, which extends distribution considerations to encompass an exponential family of distributions. Leveraging the conjugation constraint revealed in our theorem, we introduce a \textsc{ConjNorm} method, reframing density function design as a search for the optimal norm coefficient $p$ against the given dataset. In light of the computational challenges of normalization, we devise an unbiased and analytically tractable estimator of the partition function using the Monte Carlo-based importance sampling technique. Extensive experiments across OOD detection benchmarks empirically demonstrate that our proposed \textsc{ConjNorm} has established a new state-of-the-art in a variety of OOD detection setups, outperforming the current best method by up to 13.25$\%$ and 28.19$\%$ (FPR95) on CIFAR-100 and ImageNet-1K, respectively.
In Search of Lost Online Test-time Adaptation: A Survey
Wang, Zixin, Luo, Yadan, Zheng, Liang, Chen, Zhuoxiao, Wang, Sen, Huang, Zi
In this paper, we present a comprehensive survey on online test-time adaptation (OTTA), a paradigm focused on adapting machine learning models to novel data distributions upon batch arrival. Despite the proliferation of OTTA methods recently, the field is mired in issues like ambiguous settings, antiquated backbones, and inconsistent hyperparameter tuning, obfuscating the real challenges and making reproducibility elusive. For clarity and a rigorous comparison, we classify OTTA techniques into three primary categories and subject them to benchmarks using the potent Vision Transformer (ViT) backbone to discover genuinely effective strategies. Our benchmarks span not only conventional corrupted datasets such as CIFAR-10/100-C and ImageNet-C but also real-world shifts embodied in CIFAR-10.1 and CIFAR-10-Warehouse, encapsulating variations across search engines and synthesized data by diffusion models. To gauge efficiency in online scenarios, we introduce novel evaluation metrics, inclusive of FLOPs, shedding light on the trade-offs between adaptation accuracy and computational overhead. Our findings diverge from existing literature, indicating: (1) transformers exhibit heightened resilience to diverse domain shifts, (2) the efficacy of many OTTA methods hinges on ample batch sizes, and (3) stability in optimization and resistance to perturbations are critical during adaptation, especially when the batch size is 1. Motivated by these insights, we pointed out promising directions for future research. The source code is made available: https://github.com/Jo-wang/OTTA_ViT_survey.
Towards Open World Active Learning for 3D Object Detection
Chen, Zhuoxiao, Luo, Yadan, Wang, Zixin, Wang, Zijian, Yu, Xin, Huang, Zi
Significant strides have been made in closed world 3D object detection, testing systems in environments with known classes. However, the challenge arises in open world scenarios where new object classes appear. Existing efforts sequentially learn novel classes from streams of labeled data at a significant annotation cost, impeding efficient deployment to the wild. To seek effective solutions, we investigate a more practical yet challenging research task: Open World Active Learning for 3D Object Detection (OWAL-3D), aiming at selecting a small number of 3D boxes to annotate while maximizing detection performance on both known and unknown classes. The core difficulty centers on striking a balance between mining more unknown instances and minimizing the labeling expenses of point clouds. Empirically, our study finds the harmonious and inverse relationship between box quantities and their confidences can help alleviate the dilemma, avoiding the repeated selection of common known instances and focusing on uncertain objects that are potentially unknown. We unify both relational constraints into a simple and effective AL strategy namely OpenCRB, which guides to acquisition of informative point clouds with the least amount of boxes to label. Furthermore, we develop a comprehensive codebase for easy reproducing and future research, supporting 15 baseline methods (i.e., active learning, out-of-distribution detection and open world detection), 2 types of modern 3D detectors (i.e., one-stage SECOND and two-stage PV-RCNN) and 3 benchmark 3D datasets (i.e., KITTI, nuScenes and Waymo). Extensive experiments evidence that the proposed Open-CRB demonstrates superiority and flexibility in recognizing both novel and shared categories with very limited labeling costs, compared to state-of-the-art baselines.