Luo, Dongyu
PT: A Plain Transformer is Good Hospital Readmission Predictor
Fan, Zhenyi, Li, Jiaqi, Luo, Dongyu, Yuan, Yuqi
Hospital readmission prediction is critical for clinical decision support, aiming to identify patients at risk of returning within 30 days post-discharge. High readmission rates often indicate inadequate treatment or post-discharge care, making effective prediction models essential for optimizing resources and improving patient outcomes. We propose PT, a Transformer-based model that integrates Electronic Health Records (EHR), medical images, and clinical notes to predict 30-day all-cause hospital readmissions. PT extracts features from raw data and uses specialized Transformer blocks tailored to the data's complexity. Enhanced with Random Forest for EHR feature selection and test-time ensemble techniques, PT achieves superior accuracy, scalability, and robustness. It performs well even when temporal information is missing. Our main contributions are: (1)Simplicity: A powerful and efficient baseline model outperforming existing ones in prediction accuracy; (2)Scalability: Flexible handling of various features from different modalities, achieving high performance with just clinical notes or EHR data; (3)Robustness: Strong predictive performance even with missing or unclear temporal data.
DiffFluid: Plain Diffusion Models are Effective Predictors of Flow Dynamics
Luo, Dongyu, Wu, Jianyu, Wang, Jing, Xie, Hairun, Yue, Xiangyu, Tang, Shixiang
We showcase the plain diffusion models with Transformers are effective predictors of fluid dynamics under various working conditions, e.g., Darcy flow and high Reynolds number. Unlike traditional fluid dynamical solvers that depend on complex architectures to extract intricate correlations and learn underlying physical states, our approach formulates the prediction of flow dynamics as the image translation problem and accordingly leverage the plain diffusion model to tackle the problem. This reduction in model design complexity does not compromise its ability to capture complex physical states and geometric features of fluid dynamical equations, leading to high-precision solutions. In preliminary tests on various fluid-related benchmarks, our DiffFluid achieves consistent state-of-the-art performance, particularly in solving the Navier-Stokes equations in fluid dynamics, with a relative precision improvement of +44.8%. In addition, we achieved relative improvements of +14.0% and +11.3% in the Darcy flow equation and the airfoil problem with Euler's equation, respectively. Code will be released at https://github.com/DongyuLUO/DiffFluid upon acceptance.