Luck, Kevin Sebastian
Discrete Codebook World Models for Continuous Control
Scannell, Aidan, Nakhaei, Mohammadreza, Kujanpää, Kalle, Zhao, Yi, Luck, Kevin Sebastian, Solin, Arno, Pajarinen, Joni
In reinforcement learning (RL), world models serve as internal simulators, enabling agents to predict environment dynamics and future outcomes in order to make informed decisions. While previous approaches leveraging discrete latent spaces, such as DreamerV3, have demonstrated strong performance in discrete action settings and visual control tasks, their comparative performance in state-based continuous control remains underexplored. In contrast, methods with continuous latent spaces, such as TD-MPC2, have shown notable success in state-based continuous control benchmarks. In this paper, we demonstrate that modeling discrete latent states has benefits over continuous latent states and that discrete codebook encodings are more effective representations for continuous control, compared to alternative encodings, such as one-hot and label-based encodings. Based on these insights, we introduce DCWM: Discrete Codebook World Model, a self-supervised world model with a discrete and stochastic latent space, where latent states are codes from a codebook. We combine DCWM with decision-time planning to get our model-based RL algorithm, named DC-MPC: Discrete Codebook Model Predictive Control, which performs competitively against recent state-of-the-art algorithms, including TD-MPC2 and DreamerV3, on continuous control benchmarks. See our project website www.aidanscannell.com/dcmpc.
Learning Transparent Reward Models via Unsupervised Feature Selection
Baimukashev, Daulet, Alcan, Gokhan, Luck, Kevin Sebastian, Kyrki, Ville
In complex real-world tasks such as robotic manipulation and autonomous driving, collecting expert demonstrations is often more straightforward than specifying precise learning objectives and task descriptions. Learning from expert data can be achieved through behavioral cloning or by learning a reward function, i.e., inverse reinforcement learning. The latter allows for training with additional data outside the training distribution, guided by the inferred reward function. We propose a novel approach to construct compact and transparent reward models from automatically selected state features. These inferred rewards have an explicit form and enable the learning of policies that closely match expert behavior by training standard reinforcement learning algorithms from scratch. We validate our method's performance in various robotic environments with continuous and high-dimensional state spaces. Webpage: \url{https://sites.google.com/view/transparent-reward}.
Practical Equivariances via Relational Conditional Neural Processes
Huang, Daolang, Haussmann, Manuel, Remes, Ulpu, John, ST, Clarté, Grégoire, Luck, Kevin Sebastian, Kaski, Samuel, Acerbi, Luigi
Conditional Neural Processes (CNPs) are a class of metalearning models popular for combining the runtime efficiency of amortized inference with reliable uncertainty quantification. Many relevant machine learning tasks, such as in spatio-temporal modeling, Bayesian Optimization and continuous control, inherently contain equivariances -- for example to translation -- which the model can exploit for maximal performance. However, prior attempts to include equivariances in CNPs do not scale effectively beyond two input dimensions. In this work, we propose Relational Conditional Neural Processes (RCNPs), an effective approach to incorporate equivariances into any neural process model. Our proposed method extends the applicability and impact of equivariant neural processes to higher dimensions. We empirically demonstrate the competitive performance of RCNPs on a large array of tasks naturally containing equivariances.
Conditional Mutual Information for Disentangled Representations in Reinforcement Learning
Dunion, Mhairi, McInroe, Trevor, Luck, Kevin Sebastian, Hanna, Josiah P., Albrecht, Stefano V.
Reinforcement Learning (RL) environments can produce training data with spurious correlations between features due to the amount of training data or its limited feature coverage. This can lead to RL agents encoding these misleading correlations in their latent representation, preventing the agent from generalising if the correlation changes within the environment or when deployed in the real world. Disentangled representations can improve robustness, but existing disentanglement techniques that minimise mutual information between features require independent features, thus they cannot disentangle correlated features. We propose an auxiliary task for RL algorithms that learns a disentangled representation of high-dimensional observations with correlated features by minimising the conditional mutual information between features in the representation. We demonstrate experimentally, using continuous control tasks, that our approach improves generalisation under correlation shifts, as well as improving the training performance of RL algorithms in the presence of correlated features.
Temporal Disentanglement of Representations for Improved Generalisation in Reinforcement Learning
Dunion, Mhairi, McInroe, Trevor, Luck, Kevin Sebastian, Hanna, Josiah P., Albrecht, Stefano V.
Reinforcement Learning (RL) agents are often unable to generalise well to environment variations in the state space that were not observed during training. This issue is especially problematic for image-based RL, where a change in just one variable, such as the background colour, can change many pixels in the image. The changed pixels can lead to drastic changes in the agent's latent representation of the image, causing the learned policy to fail. To learn more robust representations, we introduce TEmporal Disentanglement (TED), a self-supervised auxiliary task that leads to disentangled image representations exploiting the sequential nature of RL observations. We find empirically that RL algorithms utilising TED as an auxiliary task adapt more quickly to changes in environment variables with continued training compared to state-of-the-art representation learning methods. Since TED enforces a disentangled structure of the representation, our experiments also show that policies trained with TED generalise better to unseen values of variables irrelevant to the task (e.g. background colour) as well as unseen values of variables that affect the optimal policy (e.g. goal positions).
Co-Imitation: Learning Design and Behaviour by Imitation
Rajani, Chang, Arndt, Karol, Blanco-Mulero, David, Luck, Kevin Sebastian, Kyrki, Ville
The co-adaptation of robots has been a long-standing research endeavour with the goal of adapting both body and behaviour of a system for a given task, inspired by the natural evolution of animals. Co-adaptation has the potential to eliminate costly manual hardware engineering as well as improve the performance of systems. The standard approach to co-adaptation is to use a reward function for optimizing behaviour and morphology. However, defining and constructing such reward functions is notoriously difficult and often a significant engineering effort. This paper introduces a new viewpoint on the co-adaptation problem, which we call co-imitation: finding a morphology and a policy that allow an imitator to closely match the behaviour of a demonstrator. To this end we propose a co-imitation methodology for adapting behaviour and morphology by matching state distributions of the demonstrator. Specifically, we focus on the challenging scenario with mismatched state- and action-spaces between both agents. We find that co-imitation increases behaviour similarity across a variety of tasks and settings, and demonstrate co-imitation by transferring human walking, jogging and kicking skills onto a simulated humanoid.
Residual Learning from Demonstration
Davchev, Todor, Luck, Kevin Sebastian, Burke, Michael, Meier, Franziska, Schaal, Stefan, Ramamoorthy, Subramanian
Contacts and friction are inherent to nearly all robotic manipulation tasks. Through the motor skill of insertion, we study how robots can learn to cope when these attributes play a salient role. In this work we propose residual learning from demonstration (rLfD), a framework that combines dynamic movement primitives (DMP) that rely on behavioural cloning with a reinforcement learning (RL) based residual correction policy. The proposed solution is applied directly in task space and operates on the full pose of the robot. We show that rLfD outperforms alternatives and improves the generalisation abilities of DMPs. We evaluate this approach by training an agent to successfully perform both simulated and real world insertions of pegs, gears and plugs into respective sockets.
Sparse Latent Space Policy Search
Luck, Kevin Sebastian (Arizona State University) | Pajarinen, Joni (Aalto University) | Berger, Erik (Technical University Bergakademie Freiberg) | Kyrki, Ville (Aalto University) | Amor, Heni Ben (Arizona State University)
Computational agents often need to learn policies that involve many control variables, e.g., a robot needs to control several joints simultaneously. Learning a policy with a high number of parameters, however, usually requires a large number of training samples. We introduce a reinforcement learning method for sample-efficient policy search that exploits correlations between control variables. Such correlations are particularly frequent in motor skill learning tasks. The introduced method uses Variational Inference to estimate policy parameters, while at the same time uncovering a low-dimensional latent space of controls. Prior knowledge about the task and the structure of the learning agent can be provided by specifying groups of potentially correlated parameters. This information is then used to impose sparsity constraints on the mapping between the high-dimensional space of controls and a lower-dimensional latent space. In experiments with a simulated bi-manual manipulator, the new approach effectively identifies synergies between joints, performs efficient low-dimensional policy search, and outperforms state-of-the-art policy search methods.