Lu, Zhiwu
Bridging Writing Manner Gap in Visual Instruction Tuning by Creating LLM-aligned Instructions
Jing, Dong, Fei, Nanyi, Lu, Zhiwu
In the realm of Large Multi-modal Models (LMMs), the instruction quality during the visual instruction tuning stage significantly influences the performance of modality alignment. In this paper, we assess the instruction quality from a unique perspective termed \textbf{Writing Manner}, which encompasses the selection of vocabulary, grammar and sentence structure to convey specific semantics. We argue that there exists a substantial writing manner gap between the visual instructions and the base Large Language Models (LLMs) within LMMs. This gap forces the pre-trained base LLMs to deviate from their original writing styles, leading to capability degradation of both base LLMs and LMMs. To bridge the writing manner gap while preserving the original semantics, we propose directly leveraging the base LLM to align the writing manner of soft-format visual instructions with that of the base LLM itself, resulting in novel LLM-aligned instructions. The manual writing manner evaluation results demonstrate that our approach successfully minimizes the writing manner gap. By utilizing LLM-aligned instructions, the baseline models LLaVA-7B and QwenVL demonstrate enhanced resistance to hallucinations and non-trivial comprehensive improvements across all $15$ visual and language benchmarks.
CoTBal: Comprehensive Task Balancing for Multi-Task Visual Instruction Tuning
Dai, Yanqi, Jing, Dong, Fei, Nanyi, Lu, Zhiwu
Visual instruction tuning is a key training stage of large multimodal models (LMMs). Nevertheless, the common practice of indiscriminately mixing instruction-following data from various tasks may result in suboptimal overall performance due to different instruction formats and knowledge domains across tasks. To mitigate this issue, we propose a novel Comprehensive Task Balancing (CoTBal) algorithm for multi-task visual instruction tuning of LMMs. To our knowledge, this is the first work that explores multi-task optimization in visual instruction tuning. Specifically, we consider two key dimensions for task balancing: (1) Inter-Task Contribution, the phenomenon where learning one task potentially enhances the performance in other tasks, attributable to the overlapping knowledge domains, and (2) Intra-Task Difficulty, which refers to the learning difficulty within a single task. By quantifying these two dimensions with performance-based metrics, task balancing is thus enabled by assigning more weights to tasks that offer substantial contributions to others, receive minimal contributions from others, and also have great intra-task difficulties. Experiments show that our CoTBal leads to superior overall performance in multi-task visual instruction tuning.
TikTalk: A Video-Based Dialogue Dataset for Multi-Modal Chitchat in Real World
Lin, Hongpeng, Ruan, Ludan, Xia, Wenke, Liu, Peiyu, Wen, Jingyuan, Xu, Yixin, Hu, Di, Song, Ruihua, Zhao, Wayne Xin, Jin, Qin, Lu, Zhiwu
To facilitate the research on intelligent and human-like chatbots with multi-modal context, we introduce a new video-based multi-modal dialogue dataset, called TikTalk. We collect 38K videos from a popular video-sharing platform, along with 367K conversations posted by users beneath them. Users engage in spontaneous conversations based on their multi-modal experiences from watching videos, which helps recreate real-world chitchat context. Compared to previous multi-modal dialogue datasets, the richer context types in TikTalk lead to more diverse conversations, but also increase the difficulty in capturing human interests from intricate multi-modal information to generate personalized responses. Moreover, external knowledge is more frequently evoked in our dataset. These facts reveal new challenges for multi-modal dialogue models. We quantitatively demonstrate the characteristics of TikTalk, propose a video-based multi-modal chitchat task, and evaluate several dialogue baselines. Experimental results indicate that the models incorporating large language models (LLM) can generate more diverse responses, while the model utilizing knowledge graphs to introduce external knowledge performs the best overall. Furthermore, no existing model can solve all the above challenges well. There is still a large room for future improvements, even for LLM with visual extensions. Our dataset is available at \url{https://ruc-aimind.github.io/projects/TikTalk/}.
Improvable Gap Balancing for Multi-Task Learning
Dai, Yanqi, Fei, Nanyi, Lu, Zhiwu
In multi-task learning (MTL), gradient balancing has recently attracted more research interest than loss balancing since it often leads to better performance. However, loss balancing is much more efficient than gradient balancing, and thus it is still worth further exploration in MTL. Note that prior studies typically ignore that there exist varying improvable gaps across multiple tasks, where the improvable gap per task is defined as the distance between the current training progress and desired final training progress. Therefore, after loss balancing, the performance imbalance still arises in many cases. In this paper, following the loss balancing framework, we propose two novel improvable gap balancing (IGB) algorithms for MTL: one takes a simple heuristic, and the other (for the first time) deploys deep reinforcement learning for MTL. Particularly, instead of directly balancing the losses in MTL, both algorithms choose to dynamically assign task weights for improvable gap balancing. Moreover, we combine IGB and gradient balancing to show the complementarity between the two types of algorithms. Extensive experiments on two benchmark datasets demonstrate that our IGB algorithms lead to the best results in MTL via loss balancing and achieve further improvements when combined with gradient balancing. Code is available at https://github.com/YanqiDai/IGB4MTL.
UniAdapter: Unified Parameter-Efficient Transfer Learning for Cross-modal Modeling
Lu, Haoyu, Huo, Yuqi, Yang, Guoxing, Lu, Zhiwu, Zhan, Wei, Tomizuka, Masayoshi, Ding, Mingyu
Large-scale vision-language pre-trained models have shown promising transferability to various downstream tasks. As the size of these foundation models and the number of downstream tasks grow, the standard full fine-tuning paradigm becomes unsustainable due to heavy computational and storage costs. This paper proposes UniAdapter, which unifies unimodal and multimodal adapters for parameter-efficient cross-modal adaptation on pre-trained vision-language models. Specifically, adapters are distributed to different modalities and their interactions, with the total number of tunable parameters reduced by partial weight sharing. The unified and knowledge-sharing design enables powerful cross-modal representations that can benefit various downstream tasks, requiring only 1.0%-2.0% tunable parameters of the pre-trained model. Extensive experiments on 6 cross-modal downstream benchmarks (including video-text retrieval, image-text retrieval, VideoQA, and VQA) show that in most cases, UniAdapter not only outperforms the state-of-the-arts, but even beats the full fine-tuning strategy. Particularly, on the MSRVTT retrieval task, UniAdapter achieves 49.7% recall@1 with 2.2% model parameters, outperforming the latest competitors by 2.0%. The code and models are available at https://github.com/RERV/UniAdapter.
LGDN: Language-Guided Denoising Network for Video-Language Modeling
Lu, Haoyu, Ding, Mingyu, Fei, Nanyi, Huo, Yuqi, Lu, Zhiwu
Video-language modeling has attracted much attention with the rapid growth of web videos. Most existing methods assume that the video frames and text description are semantically correlated, and focus on video-language modeling at video level. However, this hypothesis often fails for two reasons: (1) With the rich semantics of video contents, it is difficult to cover all frames with a single video-level description; (2) A raw video typically has noisy/meaningless information (e.g., scenery shot, transition or teaser). Although a number of recent works deploy attention mechanism to alleviate this problem, the irrelevant/noisy information still makes it very difficult to address. To overcome such challenge, we thus propose an efficient and effective model, termed Language-Guided Denoising Network (LGDN), for video-language modeling. Different from most existing methods that utilize all extracted video frames, LGDN dynamically filters out the misaligned or redundant frames under the language supervision and obtains only 2--4 salient frames per video for cross-modal token-level alignment. Extensive experiments on five public datasets show that our LGDN outperforms the state-of-the-arts by large margins. We also provide detailed ablation study to reveal the critical importance of solving the noise issue, in hope of inspiring future video-language work.
WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model
Fei, Nanyi, Lu, Zhiwu, Gao, Yizhao, Yang, Guoxing, Huo, Yuqi, Wen, Jingyuan, Lu, Haoyu, Song, Ruihua, Gao, Xin, Xiang, Tao, Sun, Hao, Wen, Ji-Rong
The fundamental goal of artificial intelligence (AI) is to mimic the core cognitive activities of human including perception, memory, and reasoning. Although tremendous success has been achieved in various AI research fields (e.g., computer vision and natural language processing), the majority of existing works only focus on acquiring single cognitive ability (e.g., image classification, reading comprehension, or visual commonsense reasoning). To overcome this limitation and take a solid step to artificial general intelligence (AGI), we develop a novel foundation model pre-trained with huge multimodal (visual and textual) data, which is able to be quickly adapted for a broad class of downstream cognitive tasks. Such a model is fundamentally different from the multimodal foundation models recently proposed in the literature that typically make strong semantic correlation assumption and expect exact alignment between image and text modalities in their pre-training data, which is often hard to satisfy in practice thus limiting their generalization abilities. To resolve this issue, we propose to pre-train our foundation model by self-supervised learning with weak semantic correlation data crawled from the Internet and show that state-of-the-art results can be obtained on a wide range of downstream tasks (both single-modal and cross-modal). Particularly, with novel model-interpretability tools developed in this work, we demonstrate that strong imagination ability (even with hints of commonsense) is now possessed by our foundation model. We believe our work makes a transformative stride towards AGI and will have broad impact on various AI+ fields (e.g., neuroscience and healthcare).
Pre-Trained Models: Past, Present and Future
Han, Xu, Zhang, Zhengyan, Ding, Ning, Gu, Yuxian, Liu, Xiao, Huo, Yuqi, Qiu, Jiezhong, Zhang, Liang, Han, Wentao, Huang, Minlie, Jin, Qin, Lan, Yanyan, Liu, Yang, Liu, Zhiyuan, Lu, Zhiwu, Qiu, Xipeng, Song, Ruihua, Tang, Jie, Wen, Ji-Rong, Yuan, Jinhui, Zhao, Wayne Xin, Zhu, Jun
Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved great success and become a milestone in the field of artificial intelligence (AI). Owing to sophisticated pre-training objectives and huge model parameters, large-scale PTMs can effectively capture knowledge from massive labeled and unlabeled data. By storing knowledge into huge parameters and fine-tuning on specific tasks, the rich knowledge implicitly encoded in huge parameters can benefit a variety of downstream tasks, which has been extensively demonstrated via experimental verification and empirical analysis. It is now the consensus of the AI community to adopt PTMs as backbone for downstream tasks rather than learning models from scratch. In this paper, we take a deep look into the history of pre-training, especially its special relation with transfer learning and self-supervised learning, to reveal the crucial position of PTMs in the AI development spectrum. Further, we comprehensively review the latest breakthroughs of PTMs. These breakthroughs are driven by the surge of computational power and the increasing availability of data, towards four important directions: designing effective architectures, utilizing rich contexts, improving computational efficiency, and conducting interpretation and theoretical analysis. Finally, we discuss a series of open problems and research directions of PTMs, and hope our view can inspire and advance the future study of PTMs.
Few-Shot Learning as Domain Adaptation: Algorithm and Analysis
Guan, Jiechao, Lu, Zhiwu, Xiang, Tao, Wen, Ji-Rong
To recognize the unseen classes with only few samples, few-shot learning (FSL) uses prior knowledge learned from the seen classes. A major challenge for FSL is that the distribution of the unseen classes is different from that of those seen, resulting in poor generalization even when a model is meta-trained on the seen classes. This class-difference-caused distribution shift can be considered as a special case of domain shift. In this paper, for the first time, we propose a domain adaptation prototypical network with attention (DAPNA) to explicitly tackle such a domain shift problem in a meta-learning framework. Specifically, armed with a set transformer based attention module, we construct each episode with two sub-episodes without class overlap on the seen classes to simulate the domain shift between the seen and unseen classes. To align the feature distributions of the two sub-episodes with limited training samples, a feature transfer network is employed together with a margin disparity discrepancy (MDD) loss. Importantly, theoretical analysis is provided to give the learning bound of our DAPNA. Extensive experiments show that our DAPNA outperforms the state-of-the-art FSL alternatives, often by significant margins.
Domain-Invariant Projection Learning for Zero-Shot Recognition
Zhao, An, Ding, Mingyu, Guan, Jiechao, Lu, Zhiwu, Xiang, Tao, Wen, Ji-Rong
Zero-shot learning (ZSL) aims to recognize unseen object classes without any training samples, which can be regarded as a form of transfer learning from seen classes to unseen ones. This is made possible by learning a projection between a feature space and a semantic space (e.g. attribute space). Key to ZSL is thus to learn a projection function that is robust against the often large domain gap between the seen and unseen classes. In this paper, we propose a novel ZSL model termed domain-invariant projection learning (DIPL). Our model has two novel components: (1) A domain-invariant feature self-reconstruction task is introduced to the seen/unseen class data, resulting in a simple linear formulation that casts ZSL into a min-min optimization problem. Solving the problem is non-trivial, and a novel iterative algorithm is formulated as the solver, with rigorous theoretic algorithm analysis provided. (2) To further align the two domains via the learned projection, shared semantic structure among seen and unseen classes is explored via forming superclasses in the semantic space. Extensive experiments show that our model outperforms the state-of-the-art alternatives by significant margins.