Goto

Collaborating Authors

 Lu, Yifan


Cosmos-Transfer1: Conditional World Generation with Adaptive Multimodal Control

arXiv.org Artificial Intelligence

We introduce Cosmos-Transfer1, a conditional world generation model that can generate world simulations based on multiple spatial control inputs of various modalities such as segmentation, depth, and edge. In the design, the spatial conditional scheme is adaptive and customizable. It allows weighting different conditional inputs differently at different spatial locations. This enables highly controllable world generation and finds use in various world-to-world transfer use cases, including Sim2Real. We conduct extensive evaluations to analyze the proposed model and demonstrate its applications for Physical AI, including robotics Sim2Real and autonomous vehicle data enrichment. We further demonstrate an inference scaling strategy to achieve real-time world generation with an NVIDIA GB200 NVL72 rack.


Knowledge Editing with Dynamic Knowledge Graphs for Multi-Hop Question Answering

arXiv.org Artificial Intelligence

Multi-hop question answering (MHQA) poses a significant challenge for large language models (LLMs) due to the extensive knowledge demands involved. Knowledge editing, which aims to precisely modify the LLMs to incorporate specific knowledge without negatively impacting other unrelated knowledge, offers a potential solution for addressing MHQA challenges with LLMs. However, current solutions struggle to effectively resolve issues of knowledge conflicts. Most parameter-preserving editing methods are hindered by inaccurate retrieval and overlook secondary editing issues, which can introduce noise into the reasoning process of LLMs. In this paper, we introduce KEDKG, a novel knowledge editing method that leverages a dynamic knowledge graph for MHQA, designed to ensure the reliability of answers. KEDKG involves two primary steps: dynamic knowledge graph construction and knowledge graph augmented generation. Initially, KEDKG autonomously constructs a dynamic knowledge graph to store revised information while resolving potential knowledge conflicts. Subsequently, it employs a fine-grained retrieval strategy coupled with an entity and relation detector to enhance the accuracy of graph retrieval for LLM generation. Experimental results on benchmarks show that KEDKG surpasses previous state-of-the-art models, delivering more accurate and reliable answers in environments with dynamic information.


InfiniCube: Unbounded and Controllable Dynamic 3D Driving Scene Generation with World-Guided Video Models

arXiv.org Artificial Intelligence

Previous methods for scene generation either suffer from limited scales or lack geometric and appearance Generating simulatable and controllable 3D scenes is an essential consistency along generated sequences. In contrast, task for a wide spectrum of applications, including we leverage the recent advancements in scalable 3D mixed reality, robotics, and the training and testing of autonomous representation and video models to achieve large dynamic vehicles (AV) [25, 33]. In particular, the requirements scene generation that allows flexible controls through HD of AV applications have introduced new challenges maps, vehicle bounding boxes, and text descriptions. First, for 3D generative models in driving scenarios, posing the we construct a map-conditioned sparse-voxel-based 3D following key desiderata: (1) fidelity and consistency, to generative model to unleash its power for unbounded voxel ensure that the generated scenes support photo-realistic rendering world generation. Then, we re-purpose a video model and while preserving consistent appearance and geometry ground it on the voxel world through a set of carefully designed for reliable and stable physics simulation; (2) largescale, pixel-aligned guidance buffers, synthesizing a consistent to generate scenes at map-level for traffic simulation; appearance. Finally, we propose a fast feed-forward and (3) controllability, to allow easy manipulation of the approach that employs both voxel and pixel branches to lift scene layout, appearance, and ego-car behaviors for curating the dynamic videos to dynamic 3D Gaussians with control-adversarial scenarios.


SCube: Instant Large-Scale Scene Reconstruction using VoxSplats

arXiv.org Artificial Intelligence

We present SCube, a novel method for reconstructing large-scale 3D scenes (geometry, appearance, and semantics) from a sparse set of posed images. Our method encodes reconstructed scenes using a novel representation VoxSplat, which is a set of 3D Gaussians supported on a high-resolution sparse-voxel scaffold. To reconstruct a VoxSplat from images, we employ a hierarchical voxel latent diffusion model conditioned on the input images followed by a feedforward appearance prediction model. The diffusion model generates high-resolution grids progressively in a coarse-to-fine manner, and the appearance network predicts a set of Gaussians within each voxel. From as few as 3 non-overlapping input images, SCube can generate millions of Gaussians with a 1024^3 voxel grid spanning hundreds of meters in 20 seconds. Past works tackling scene reconstruction from images either rely on per-scene optimization and fail to reconstruct the scene away from input views (thus requiring dense view coverage as input) or leverage geometric priors based on low-resolution models, which produce blurry results. In contrast, SCube leverages high-resolution sparse networks and produces sharp outputs from few views. We show the superiority of SCube compared to prior art using the Waymo self-driving dataset on 3D reconstruction and demonstrate its applications, such as LiDAR simulation and text-to-scene generation.


Integer Scale: A Free Lunch for Faster Fine-grained Quantization of LLMs

arXiv.org Artificial Intelligence

We introduce Integer Scale, a novel post-training quantization scheme for large language models that effectively resolves the inference bottleneck in current fine-grained quantization approaches while maintaining similar accuracies. Integer Scale is a free lunch as it requires no extra calibration or fine-tuning which will otherwise incur additional costs. It can be used plug-and-play for most fine-grained quantization methods. Its integration results in at most 1.85x end-to-end speed boost over the original counterpart with comparable accuracy. Additionally, due to the orchestration of the proposed Integer Scale and fine-grained quantization, we resolved the quantization difficulty for Mixtral-8x7B and LLaMA-3 models with negligible performance degradation, and it comes with an end-to-end speed boost of 2.13x, and 2.31x compared with their FP16 versions respectively.


Latent Energy-Based Odyssey: Black-Box Optimization via Expanded Exploration in the Energy-Based Latent Space

arXiv.org Artificial Intelligence

Offline Black-Box Optimization (BBO) aims at optimizing a black-box function using the knowledge from a pre-collected offline dataset of function values and corresponding input designs. However, the high-dimensional and highly-multimodal input design space of black-box function pose inherent challenges for most existing methods that model and operate directly upon input designs. These issues include but are not limited to high sample complexity, which relates to inaccurate approximation of black-box function; and insufficient coverage and exploration of input design modes, which leads to suboptimal proposal of new input designs. In this work, we consider finding a latent space that serves as a compressed yet accurate representation of the design-value joint space, enabling effective latent exploration of high-value input design modes. To this end, we formulate an learnable energy-based latent space, and propose Noise-intensified Telescoping density-Ratio Estimation (NTRE) scheme for variational learning of an accurate latent space model without costly Markov Chain Monte Carlo. The optimization process is then exploration of high-value designs guided by the learned energy-based model in the latent space, formulated as gradient-based sampling from a latent-variable-parameterized inverse model. We show that our particular parameterization encourages expanded exploration around high-value design modes, motivated by inversion thinking of a fundamental result of conditional covariance matrix typically used for variance reduction. We observe that our method, backed by an accurately learned informative latent space and an expanding-exploration model design, yields significant improvements over strong previous methods on both synthetic and real world datasets such as the design-bench suite.


A Speed Odyssey for Deployable Quantization of LLMs

arXiv.org Artificial Intelligence

The large language model era urges faster and less costly inference. Prior model compression works on LLMs tend to undertake a software-centric approach primarily focused on the simulated quantization performance. By neglecting the feasibility of deployment, these approaches are typically disabled in real practice. They used to drastically push down the quantization bit range for a reduced computation which might not be supported by the mainstream hardware, or involve sophisticated algorithms that introduce extra computation or memory access overhead. We argue that pursuing a hardware-centric approach in the construction of quantization algorithms is crucial. In this regard, we are driven to build our compression method on top of hardware awareness, eliminating impractical algorithm choices while maximizing the benefit of hardware acceleration. Our method, OdysseyLLM, comes with a novel W4A8 kernel implementation called FastGEMM and a combined recipe of quantization strategies. Extensive experiments manifest the superiority of our W4A8 method which brings the actual speed boosting up to \textbf{4$\times$} compared to Hugging Face FP16 inference and \textbf{2.23$\times$} vs. the state-of-the-art inference engine TensorRT-LLM in FP16, and \textbf{1.45$\times$} vs. TensorRT-LLM in INT8, yet without substantially harming the performance.


Asynchrony-Robust Collaborative Perception via Bird's Eye View Flow

arXiv.org Artificial Intelligence

Collaborative perception can substantially boost each agent's perception ability by facilitating communication among multiple agents. However, temporal asynchrony among agents is inevitable in the real world due to communication delays, interruptions, and clock misalignments. This issue causes information mismatch during multi-agent fusion, seriously shaking the foundation of collaboration. To address this issue, we propose CoBEVFlow, an asynchrony-robust collaborative perception system based on bird's eye view (BEV) flow. The key intuition of CoBEVFlow is to compensate motions to align asynchronous collaboration messages sent by multiple agents. To model the motion in a scene, we propose BEV flow, which is a collection of the motion vector corresponding to each spatial location. Based on BEV flow, asynchronous perceptual features can be reassigned to appropriate positions, mitigating the impact of asynchrony. CoBEVFlow has two advantages: (i) CoBEVFlow can handle asynchronous collaboration messages sent at irregular, continuous time stamps without discretization; and (ii) with BEV flow, CoBEVFlow only transports the original perceptual features, instead of generating new perceptual features, avoiding additional noises. To validate CoBEVFlow's efficacy, we create IRregular V2V(IRV2V), the first synthetic collaborative perception dataset with various temporal asynchronies that simulate different real-world scenarios. Extensive experiments conducted on both IRV2V and the real-world dataset DAIR-V2X show that CoBEVFlow consistently outperforms other baselines and is robust in extremely asynchronous settings. The code is available at https://github.com/MediaBrain-SJTU/CoBEVFlow.


MIRA: Cracking Black-box Watermarking on Deep Neural Networks via Model Inversion-based Removal Attacks

arXiv.org Artificial Intelligence

To protect the intellectual property of well-trained deep neural networks (DNNs), black-box DNN watermarks, which are embedded into the prediction behavior of DNN models on a set of specially-crafted samples, have gained increasing popularity in both academy and industry. Watermark robustness is usually implemented against attackers who steal the protected model and obfuscate its parameters for watermark removal. Recent studies empirically prove the robustness of most black-box watermarking schemes against known removal attempts. In this paper, we propose a novel Model Inversion-based Removal Attack (\textsc{Mira}), which is watermark-agnostic and effective against most of mainstream black-box DNN watermarking schemes. In general, our attack pipeline exploits the internals of the protected model to recover and unlearn the watermark message. We further design target class detection and recovered sample splitting algorithms to reduce the utility loss caused by \textsc{Mira} and achieve data-free watermark removal on half of the watermarking schemes. We conduct comprehensive evaluation of \textsc{Mira} against ten mainstream black-box watermarks on three benchmark datasets and DNN architectures. Compared with six baseline removal attacks, \textsc{Mira} achieves strong watermark removal effects on the covered watermarks, preserving at least $90\%$ of the stolen model utility, under more relaxed or even no assumptions on the dataset availability.


A Fusion Model: Towards a Virtual, Physical and Cognitive Integration and its Principles

arXiv.org Artificial Intelligence

Virtual Reality (VR), Augmented Reality (AR), Mixed Reality (MR), digital twin, Metaverse and other related digital technologies have attracted much attention in recent years. These new emerging technologies are changing the world significantly. This research introduces a fusion model, i.e. Fusion Universe (FU), where the virtual, physical, and cognitive worlds are merged together. Therefore, it is crucial to establish a set of principles for the fusion model that is compatible with our physical universe laws and principles. This paper investigates several aspects that could affect immersive and interactive experience; and proposes the fundamental principles for Fusion Universe that can integrate physical and virtual world seamlessly.