Lu, Ning
Hardware-Aware DNN Compression for Homogeneous Edge Devices
Zhang, Kunlong, Li, Guiying, Lu, Ning, Yang, Peng, Tang, Ke
Deploying deep neural networks (DNNs) across homogeneous edge devices (the devices with the same SKU labeled by the manufacturer) often assumes identical performance among them. However, once a device model is widely deployed, the performance of each device becomes different after a period of running. This is caused by the differences in user configurations, environmental conditions, manufacturing variances, battery degradation, etc. Existing DNN compression methods have not taken this scenario into consideration and can not guarantee good compression results in all homogeneous edge devices. To address this, we propose Homogeneous-Device Aware Pruning (HDAP), a hardware-aware DNN compression framework explicitly designed for homogeneous edge devices, aiming to achieve optimal average performance of the compressed model across all devices. To deal with the difficulty of time-consuming hardware-aware evaluations for thousands or millions of homogeneous edge devices, HDAP partitions all the devices into several device clusters, which can dramatically reduce the number of devices to evaluate and use the surrogate-based evaluation instead of hardware evaluation in real-time. Experiments on ResNet50 and MobileNetV1 with the ImageNet dataset show that HDAP consistently achieves lower average inference latency compared with state-of-the-art methods, with substantial speedup gains (e.g., 2.86 $\times$ speedup at 1.0G FLOPs for ResNet50) on the homogeneous device clusters. HDAP offers an effective solution for scalable, high-performance DNN deployment methods for homogeneous edge devices.
Backdoor Graph Condensation
Wu, Jiahao, Lu, Ning, Dai, Zeiyu, Fan, Wenqi, Liu, Shengcai, Li, Qing, Tang, Ke
Recently, graph condensation has emerged as a prevalent technique to improve the training efficiency for graph neural networks (GNNs). It condenses a large graph into a small one such that a GNN trained on this small synthetic graph can achieve comparable performance to a GNN trained on a large graph. However, while existing graph condensation studies mainly focus on the best trade-off between graph size and the GNNs' performance (model utility), the security issues of graph condensation have not been studied. To bridge this research gap, we propose the task of backdoor graph condensation. While graph backdoor attacks have been extensively explored, applying existing graph backdoor methods for graph condensation is not practical since they can undermine the model utility and yield low attack success rate. To alleviate these issues, we introduce two primary objectives for backdoor attacks against graph condensation: 1) the injection of triggers cannot affect the quality of condensed graphs, maintaining the utility of GNNs trained on them; and 2) the effectiveness of triggers should be preserved throughout the condensation process, achieving high attack success rate. To pursue the objectives, we devise the first backdoor attack against graph condensation, denoted as BGC. Specifically, we inject triggers during condensation and iteratively update the triggers to ensure effective attacks. Further, we propose a poisoned node selection module to minimize the influence of triggers on condensed graphs' quality. The extensive experiments demonstrate the effectiveness of our attack. BGC achieves a high attack success rate (close to 1.0) and good model utility in all cases. Furthermore, the results demonstrate our method's resilience against multiple defense methods. Finally, we conduct comprehensive studies to analyze the factors that influence the attack performance.
Applying Fine-Tuned LLMs for Reducing Data Needs in Load Profile Analysis
Hu, Yi, Kim, Hyeonjin, Ye, Kai, Lu, Ning
This paper presents a novel method for utilizing fine-tuned Large Language Models (LLMs) to minimize data requirements in load profile analysis, demonstrated through the restoration of missing data in power system load profiles. A two-stage fine-tuning strategy is proposed to adapt a pre-trained LLMs, i.e., GPT-3.5, for missing data restoration tasks. Through empirical evaluation, we demonstrate the effectiveness of the fine-tuned model in accurately restoring missing data, achieving comparable performance to state-of-the-art specifically designed models such as BERT-PIN. Key findings include the importance of prompt engineering and the optimal utilization of fine-tuning samples, highlighting the efficiency of few-shot learning in transferring knowledge from general user cases to specific target users. Furthermore, the proposed approach demonstrates notable cost-effectiveness and time efficiency compared to training models from scratch, making it a practical solution for scenarios with limited data availability and computing resources. This research has significant potential for application to other power system load profile analysis tasks. Consequently, it advances the use of LLMs in power system analytics, offering promising implications for enhancing the resilience and efficiency of power distribution systems.
Effective and Imperceptible Adversarial Textual Attack via Multi-objectivization
Liu, Shengcai, Lu, Ning, Hong, Wenjing, Qian, Chao, Tang, Ke
The field of adversarial textual attack has significantly grown over the last few years, where the commonly considered objective is to craft adversarial examples (AEs) that can successfully fool the target model. However, the imperceptibility of attacks, which is also essential for practical attackers, is often left out by previous studies. In consequence, the crafted AEs tend to have obvious structural and semantic differences from the original human-written text, making them easily perceptible. In this work, we advocate leveraging multi-objectivization to address such issue. Specifically, we reformulate the problem of crafting AEs as a multi-objective optimization problem, where the attack imperceptibility is considered as an auxiliary objective. Then, we propose a simple yet effective evolutionary algorithm, dubbed HydraText, to solve this problem. To the best of our knowledge, HydraText is currently the only approach that can be effectively applied to both score-based and decision-based attack settings. Exhaustive experiments involving 44237 instances demonstrate that HydraText consistently achieves competitive attack success rates and better attack imperceptibility than the recently proposed attack approaches. A human evaluation study also shows that the AEs crafted by HydraText are more indistinguishable from human-written text. Finally, these AEs exhibit good transferability and can bring notable robustness improvement to the target model by adversarial training.
Large Language Models can be Guided to Evade AI-Generated Text Detection
Lu, Ning, Liu, Shengcai, He, Rui, Wang, Qi, Ong, Yew-Soon, Tang, Ke
Large language models (LLMs) have shown remarkable performance in various tasks and have been extensively utilized by the public. However, the increasing concerns regarding the misuse of LLMs, such as plagiarism and spamming, have led to the development of multiple detectors, including fine-tuned classifiers and statistical methods. In this study, we equip LLMs with prompts, rather than relying on an external paraphraser, to evaluate the vulnerability of these detectors. We propose a novel Substitution-based In-Context example Optimization method (SICO) to automatically construct prompts for evading the detectors. SICO is cost-efficient as it requires only 40 human-written examples and a limited number of LLM inferences to generate a prompt. Moreover, once a task-specific prompt has been constructed, it can be universally used against a wide range of detectors. Extensive experiments across three real-world tasks demonstrate that SICO significantly outperforms the paraphraser baselines and enables GPT-3.5 to successfully evade six detectors, decreasing their AUC by 0.5 on average. Furthermore, a comprehensive human evaluation as well as a validation experiment in the wild show that the SICO-generated text achieves human-level readability and task completion rates. Finally, the strong performance of SICO exhibits its potential as a reliable evaluation tool for future detectors.
BERT-PIN: A BERT-based Framework for Recovering Missing Data Segments in Time-series Load Profiles
Hu, Yi, Ye, Kai, Kim, Hyeonjin, Lu, Ning
Inspired by the success of the Transformer model in natural language processing and computer vision, this paper introduces BERT-PIN, a Bidirectional Encoder Representations from Transformers (BERT) powered Profile Inpainting Network. BERT-PIN recovers multiple missing data segments (MDSs) using load and temperature time-series profiles as inputs. To adopt a standard Transformer model structure for profile inpainting, we segment the load and temperature profiles into line segments, treating each segment as a word and the entire profile as a sentence. We incorporate a top candidates selection process in BERT-PIN, enabling it to produce a sequence of probability distributions, based on which users can generate multiple plausible imputed data sets, each reflecting different confidence levels. We develop and evaluate BERT-PIN using real-world dataset for two applications: multiple MDSs recovery and demand response baseline estimation. Simulation results show that BERT-PIN outperforms the existing methods in accuracy while is capable of restoring multiple MDSs within a longer window. BERT-PIN, served as a pre-trained model, can be fine-tuned for conducting many downstream tasks, such as classification and super resolution.
Imperfect Digital Twin Assisted Low Cost Reinforcement Training for Multi-UAV Networks
Wang, Xiucheng, Cheng, Nan, Ma, Longfei, Yin, Zhisheng, Luan, Tom., Lu, Ning
Deep Reinforcement Learning (DRL) is widely used to optimize the performance of multi-UAV networks. However, the training of DRL relies on the frequent interactions between the UAVs and the environment, which consumes lots of energy due to the flying and communication of UAVs in practical experiments. Inspired by the growing digital twin (DT) technology, which can simulate the performance of algorithms in the digital space constructed by coping features of the physical space, the DT is introduced to reduce the costs of practical training, e.g., energy and hardware purchases. Different from previous DT-assisted works with an assumption of perfect reflecting real physics by virtual digital, we consider an imperfect DT model with deviations for assisting the training of multi-UAV networks. Remarkably, to trade off the training cost, DT construction cost, and the impact of deviations of DT on training, the natural and virtually generated UAV mixing deployment method is proposed. Two cascade neural networks (NN) are used to optimize the joint number of virtually generated UAVs, the DT construction cost, and the performance of multi-UAV networks. These two NNs are trained by unsupervised and reinforcement learning, both low-cost label-free training methods. Simulation results show the training cost can significantly decrease while guaranteeing the training performance. This implies that an efficient decision can be made with imperfect DTs in multi-UAV networks.
Digital Twin-Assisted Knowledge Distillation Framework for Heterogeneous Federated Learning
Wang, Xiucheng, Cheng, Nan, Ma, Longfei, Sun, Ruijin, Chai, Rong, Lu, Ning
In this paper, to deal with the heterogeneity in federated learning (FL) systems, a knowledge distillation (KD) driven training framework for FL is proposed, where each user can select its neural network model on demand and distill knowledge from a big teacher model using its own private dataset. To overcome the challenge of train the big teacher model in resource limited user devices, the digital twin (DT) is exploit in the way that the teacher model can be trained at DT located in the server with enough computing resources. Then, during model distillation, each user can update the parameters of its model at either the physical entity or the digital agent. The joint problem of model selection and training offloading and resource allocation for users is formulated as a mixed integer programming (MIP) problem. To solve the problem, Q-learning and optimization are jointly used, where Q-learning selects models for users and determines whether to train locally or on the server, and optimization is used to allocate resources for users based on the output of Q-learning. Simulation results show the proposed DT-assisted KD framework and joint optimization method can significantly improve the average accuracy of users while reducing the total delay.
Less is More: Understanding Word-level Textual Adversarial Attack via n-gram Frequency Descend
Lu, Ning, Liu, Shengcai, Zhang, Zhirui, Wang, Qi, Liu, Haifeng, Tang, Ke
Word-level textual adversarial attacks have achieved striking performance in fooling natural language processing models. However, the fundamental questions of why these attacks are effective, and the intrinsic properties of the adversarial examples (AEs), are still not well understood. This work attempts to interpret textual attacks through the lens of $n$-gram frequency. Specifically, it is revealed that existing word-level attacks exhibit a strong tendency toward generation of examples with $n$-gram frequency descend ($n$-FD). Intuitively, this finding suggests a natural way to improve model robustness by training the model on the $n$-FD examples. To verify this idea, we devise a model-agnostic and gradient-free AE generation approach that relies solely on the $n$-gram frequency information, and further integrate it into the recently proposed convex hull framework for adversarial training. Surprisingly, the resultant method performs quite similarly to the original gradient-based method in terms of model robustness. These findings provide a human-understandable perspective for interpreting word-level textual adversarial attacks, and a new direction to improve model robustness.
SigT: An Efficient End-to-End MIMO-OFDM Receiver Framework Based on Transformer
Ren, Ziyou, Cheng, Nan, Sun, Ruijin, Wang, Xiucheng, Lu, Ning, Xu, Wenchao
Multiple-input multiple-output and orthogonal frequency-division multiplexing (MIMO-OFDM) are the key technologies in 4G and subsequent wireless communication systems. Conventionally, the MIMO-OFDM receiver is performed by multiple cascaded blocks with different functions and the algorithm in each block is designed based on ideal assumptions of wireless channel distributions. However, these assumptions may fail in practical complex wireless environments. The deep learning (DL) method has the ability to capture key features from complex and huge data. In this paper, a novel end-to-end MIMO-OFDM receiver framework based on \textit{transformer}, named SigT, is proposed. By regarding the signal received from each antenna as a token of the transformer, the spatial correlation of different antennas can be learned and the critical zero-shot problem can be mitigated. Furthermore, the proposed SigT framework can work well without the inserted pilots, which improves the useful data transmission efficiency. Experiment results show that SigT achieves much higher performance in terms of signal recovery accuracy than benchmark methods, even in a low SNR environment or with a small number of training samples. Code is available at https://github.com/SigTransformer/SigT.