Lu, Haoran
Efficient Multi-Task Inferencing: Model Merging with Gromov-Wasserstein Feature Alignment
Fang, Luyang, Latif, Ehsan, Lu, Haoran, Zhou, Yifan, Ma, Ping, Zhai, Xiaoming
Automatic scoring of student responses enhances efficiency in education, but deploying a separate neural network for each task increases storage demands, maintenance efforts, and redundant computations. To address these challenges, this paper introduces the Gromov-Wasserstein Scoring Model Merging (GW-SMM) method, which merges models based on feature distribution similarities measured via the Gromov-Wasserstein distance. Our approach begins by extracting features from student responses using individual models, capturing both item-specific context and unique learned representations. The Gromov-Wasserstein distance then quantifies the similarity between these feature distributions, identifying the most compatible models for merging. Models exhibiting the smallest pairwise distances, typically in pairs or trios, are merged by combining only the shared layers preceding the classification head. This strategy results in a unified feature extractor while preserving separate classification heads for item-specific scoring. We validated our approach against human expert knowledge and a GPT-o1-based merging method. GW-SMM consistently outperformed both, achieving a higher micro F1 score, macro F1 score, exact match accuracy, and per-label accuracy. The improvements in micro F1 and per-label accuracy were statistically significant compared to GPT-o1-based merging (p=0.04, p=0.01). Additionally, GW-SMM reduced storage requirements by half without compromising much accuracy, demonstrating its computational efficiency alongside reliable scoring performance.
GarmentLab: A Unified Simulation and Benchmark for Garment Manipulation
Lu, Haoran, Wu, Ruihai, Li, Yitong, Li, Sijie, Zhu, Ziyu, Ning, Chuanruo, Shen, Yan, Luo, Longzan, Chen, Yuanpei, Dong, Hao
Manipulating garments and fabrics has long been a critical endeavor in the development of home-assistant robots. However, due to complex dynamics and topological structures, garment manipulations pose significant challenges. Recent successes in reinforcement learning and vision-based methods offer promising avenues for learning garment manipulation. Nevertheless, these approaches are severely constrained by current benchmarks, which offer limited diversity of tasks and unrealistic simulation behavior. Therefore, we present GarmentLab, a content-rich benchmark and realistic simulation designed for deformable object and garment manipulation. Our benchmark encompasses a diverse range of garment types, robotic systems and manipulators. The abundant tasks in the benchmark further explores of the interactions between garments, deformable objects, rigid bodies, fluids, and human body. Moreover, by incorporating multiple simulation methods such as FEM and PBD, along with our proposed sim-to-real algorithms and real-world benchmark, we aim to significantly narrow the sim-to-real gap. We evaluate state-of-the-art vision methods, reinforcement learning, and imitation learning approaches on these tasks, highlighting the challenges faced by current algorithms, notably their limited generalization capabilities. Our proposed open-source environments and comprehensive analysis show promising boost to future research in garment manipulation by unlocking the full potential of these methods. We guarantee that we will open-source our code as soon as possible. You can watch the videos in supplementary files to learn more about the details of our work. Our project page is available at: https://garmentlab.github.io/
A Systematic Assessment of OpenAI o1-Preview for Higher Order Thinking in Education
Latif, Ehsan, Zhou, Yifan, Guo, Shuchen, Gao, Yizhu, Shi, Lehong, Nayaaba, Matthew, Lee, Gyeonggeon, Zhang, Liang, Bewersdorff, Arne, Fang, Luyang, Yang, Xiantong, Zhao, Huaqin, Jiang, Hanqi, Lu, Haoran, Li, Jiaxi, Yu, Jichao, You, Weihang, Liu, Zhengliang, Liu, Vincent Shung, Wang, Hui, Wu, Zihao, Lu, Jin, Dou, Fei, Ma, Ping, Liu, Ninghao, Liu, Tianming, Zhai, Xiaoming
As artificial intelligence (AI) continues to advance, it demonstrates capabilities comparable to human intelligence, with significant potential to transform education and workforce development. This study evaluates OpenAI o1-preview's ability to perform higher-order cognitive tasks across 14 dimensions, including critical thinking, systems thinking, computational thinking, design thinking, metacognition, data literacy, creative thinking, abstract reasoning, quantitative reasoning, logical reasoning, analogical reasoning, and scientific reasoning. We used validated instruments like the Ennis-Weir Critical Thinking Essay Test and the Biological Systems Thinking Test to compare the o1-preview's performance with human performance systematically. Our findings reveal that o1-preview outperforms humans in most categories, achieving 150% better results in systems thinking, computational thinking, data literacy, creative thinking, scientific reasoning, and abstract reasoning. However, compared to humans, it underperforms by around 25% in logical reasoning, critical thinking, and quantitative reasoning. In analogical reasoning, both o1-preview and humans achieved perfect scores. Despite these strengths, the o1-preview shows limitations in abstract reasoning, where human psychology students outperform it, highlighting the continued importance of human oversight in tasks requiring high-level abstraction. These results have significant educational implications, suggesting a shift toward developing human skills that complement AI, such as creativity, abstract reasoning, and critical thinking. This study emphasizes the transformative potential of AI in education and calls for a recalibration of educational goals, teaching methods, and curricula to align with an AI-driven world.
Where2Explore: Few-shot Affordance Learning for Unseen Novel Categories of Articulated Objects
Ning, Chuanruo, Wu, Ruihai, Lu, Haoran, Mo, Kaichun, Dong, Hao
Articulated object manipulation is a fundamental yet challenging task in robotics. Due to significant geometric and semantic variations across object categories, previous manipulation models struggle to generalize to novel categories. Few-shot learning is a promising solution for alleviating this issue by allowing robots to perform a few interactions with unseen objects. However, extant approaches often necessitate costly and inefficient test-time interactions with each unseen instance. Recognizing this limitation, we observe that despite their distinct shapes, different categories often share similar local geometries essential for manipulation, such as pullable handles and graspable edges - a factor typically underutilized in previous few-shot learning works. To harness this commonality, we introduce 'Where2Explore', an affordance learning framework that effectively explores novel categories with minimal interactions on a limited number of instances. Our framework explicitly estimates the geometric similarity across different categories, identifying local areas that differ from shapes in the training categories for efficient exploration while concurrently transferring affordance knowledge to similar parts of the objects. Extensive experiments in simulated and real-world environments demonstrate our framework's capacity for efficient few-shot exploration and generalization.
ImageManip: Image-based Robotic Manipulation with Affordance-guided Next View Selection
Li, Xiaoqi, Wang, Yanzi, Shen, Yan, Iaroslav, Ponomarenko, Lu, Haoran, Wang, Qianxu, An, Boshi, Liu, Jiaming, Dong, Hao
In the realm of future home-assistant robots, 3D articulated object manipulation is essential for enabling robots to interact with their environment. Many existing studies make use of 3D point clouds as the primary input for manipulation policies. However, this approach encounters challenges due to data sparsity and the significant cost associated with acquiring point cloud data, which can limit its practicality. In contrast, RGB images offer high-resolution observations using cost effective devices but lack spatial 3D geometric information. To overcome these limitations, we present a novel image-based robotic manipulation framework. This framework is designed to capture multiple perspectives of the target object and infer depth information to complement its geometry. Initially, the system employs an eye-on-hand RGB camera to capture an overall view of the target object. It predicts the initial depth map and a coarse affordance map. The affordance map indicates actionable areas on the object and serves as a constraint for selecting subsequent viewpoints. Based on the global visual prior, we adaptively identify the optimal next viewpoint for a detailed observation of the potential manipulation success area. We leverage geometric consistency to fuse the views, resulting in a refined depth map and a more precise affordance map for robot manipulation decisions. By comparing with prior works that adopt point clouds or RGB images as inputs, we demonstrate the effectiveness and practicality of our method. In the project webpage (https://sites.google.com/view/imagemanip), real world experiments further highlight the potential of our method for practical deployment.