Goto

Collaborating Authors

 Long, Zijun


Zero-Shot Interactive Text-to-Image Retrieval via Diffusion-Augmented Representations

arXiv.org Artificial Intelligence

Interactive Text-to-Image Retrieval (I-TIR) has emerged as a transformative user-interactive tool for applications in domains such as e-commerce and education. Yet, current methodologies predominantly depend on finetuned Multimodal Large Language Models (MLLMs), which face two critical limitations: (1) Finetuning imposes prohibitive computational overhead and long-term maintenance costs. (2) Finetuning narrows the pretrained knowledge distribution of MLLMs, reducing their adaptability to novel scenarios. These issues are exacerbated by the inherently dynamic nature of real-world I-TIR systems, where queries and image databases evolve in complexity and diversity, often deviating from static training distributions. To overcome these constraints, we propose Diffusion Augmented Retrieval (DAR), a paradigm-shifting framework that bypasses MLLM finetuning entirely. DAR synergizes Large Language Model (LLM)-guided query refinement with Diffusion Model (DM)-based visual synthesis to create contextually enriched intermediate representations. This dual-modality approach deciphers nuanced user intent more holistically, enabling precise alignment between textual queries and visually relevant images. Rigorous evaluations across four benchmarks reveal DAR's dual strengths: (1) Matches state-of-the-art finetuned I-TIR models on straightforward queries without task-specific training. (2) Scalable Generalization: Surpasses finetuned baselines by 7.61% in Hits@10 (top-10 accuracy) under multi-turn conversational complexity, demonstrating robustness to intricate, distributionally shifted interactions. By eliminating finetuning dependencies and leveraging generative-augmented representations, DAR establishes a new trajectory for efficient, adaptive, and scalable cross-modal retrieval systems.


CFIR: Fast and Effective Long-Text To Image Retrieval for Large Corpora

arXiv.org Artificial Intelligence

Text-to-image retrieval aims to find the relevant images based on a text query, which is important in various use-cases, such as digital libraries, e-commerce, and multimedia databases. Although Multimodal Large Language Models (MLLMs) demonstrate state-of-the-art performance, they exhibit limitations in handling large-scale, diverse, and ambiguous real-world needs of retrieval, due to the computation cost and the injective embeddings they produce. This paper presents a two-stage Coarse-to-Fine Index-shared Retrieval (CFIR) framework, designed for fast and effective large-scale long-text to image retrieval. The first stage, Entity-based Ranking (ER), adapts to long-text query ambiguity by employing a multiple-queries-to-multiple-targets paradigm, facilitating candidate filtering for the next stage. The second stage, Summary-based Re-ranking (SR), refines these rankings using summarized queries. We also propose a specialized Decoupling-BEiT-3 encoder, optimized for handling ambiguous user needs and both stages, which also enhances computational efficiency through vector-based similarity inference. Evaluation on the AToMiC dataset reveals that CFIR surpasses existing MLLMs by up to 11.06% in Recall@1000, while reducing training and retrieval times by 68.75% and 99.79%, respectively. We will release our code to facilitate future research at https://github.com/longkukuhi/CFIR.


Understanding and Mitigating Human-Labelling Errors in Supervised Contrastive Learning

arXiv.org Artificial Intelligence

Human-annotated vision datasets inevitably contain a fraction of human mislabelled examples. While the detrimental effects of such mislabelling on supervised learning are well-researched, their influence on Supervised Contrastive Learning (SCL) remains largely unexplored. In this paper, we show that human-labelling errors not only differ significantly from synthetic label errors, but also pose unique challenges in SCL, different to those in traditional supervised learning methods. Specifically, our results indicate they adversely impact the learning process in the ~99% of cases when they occur as false positive samples. Existing noise-mitigating methods primarily focus on synthetic label errors and tackle the unrealistic setting of very high synthetic noise rates (40-80%), but they often underperform on common image datasets due to overfitting. To address this issue, we introduce a novel SCL objective with robustness to human-labelling errors, SCL-RHE. SCL-RHE is designed to mitigate the effects of real-world mislabelled examples, typically characterized by much lower noise rates (<5%). We demonstrate that SCL-RHE consistently outperforms state-of-the-art representation learning and noise-mitigating methods across various vision benchmarks, by offering improved resilience against human-labelling errors.


CLCE: An Approach to Refining Cross-Entropy and Contrastive Learning for Optimized Learning Fusion

arXiv.org Artificial Intelligence

State-of-the-art pre-trained image models predominantly adopt a two-stage approach: initial unsupervised pre-training on large-scale datasets followed by task-specific fine-tuning using Cross-Entropy loss~(CE). However, it has been demonstrated that CE can compromise model generalization and stability. While recent works employing contrastive learning address some of these limitations by enhancing the quality of embeddings and producing better decision boundaries, they often overlook the importance of hard negative mining and rely on resource intensive and slow training using large sample batches. To counter these issues, we introduce a novel approach named CLCE, which integrates Label-Aware Contrastive Learning with CE. Our approach not only maintains the strengths of both loss functions but also leverages hard negative mining in a synergistic way to enhance performance. Experimental results demonstrate that CLCE significantly outperforms CE in Top-1 accuracy across twelve benchmarks, achieving gains of up to 3.52% in few-shot learning scenarios and 3.41% in transfer learning settings with the BEiT-3 model. Importantly, our proposed CLCE approach effectively mitigates the dependency of contrastive learning on large batch sizes such as 4096 samples per batch, a limitation that has previously constrained the application of contrastive learning in budget-limited hardware environments.


LaCViT: A Label-aware Contrastive Fine-tuning Framework for Vision Transformers

arXiv.org Artificial Intelligence

Vision Transformers (ViTs) have emerged as popular models in computer vision, demonstrating state-of-the-art performance across various tasks. This success typically follows a two-stage strategy involving pre-training on large-scale datasets using self-supervised signals, such as masked random patches, followed by fine-tuning on task-specific labeled datasets with cross-entropy loss. However, this reliance on cross-entropy loss has been identified as a limiting factor in ViTs, affecting their generalization and transferability to downstream tasks. Addressing this critical challenge, we introduce a novel Label-aware Contrastive Training framework, LaCViT, which significantly enhances the quality of embeddings in ViTs. LaCViT not only addresses the limitations of cross-entropy loss but also facilitates more effective transfer learning across diverse image classification tasks. Our comprehensive experiments on eight standard image classification datasets reveal that LaCViT statistically significantly enhances the performance of three evaluated ViTs by up-to 10.78% under Top-1 Accuracy.


MultiWay-Adapater: Adapting large-scale multi-modal models for scalable image-text retrieval

arXiv.org Artificial Intelligence

As Multimodal Large Language Models (MLLMs) grow in size, adapting them to specialized tasks becomes increasingly challenging due to high computational and memory demands. Indeed, traditional fine-tuning methods are costly, due to the need for extensive, task-specific training. While efficient adaptation methods exist that aim to reduce these costs, in practice they suffer from shallow inter-modal alignment, which severely hurts model effectiveness. To tackle these computational challenges and improve inter-modal alignment, we introduce the MultiWay-Adapter (MWA), a novel framework featuring an 'Alignment Enhancer'. This enhancer deepens inter-modal alignment, enabling high transferability with minimal tuning effort. Our experiments show that unlike prior efficient tuning approaches, MWA maintains model effectiveness, while reducing training time by up-to 57%. MWA is also lightweight, increasing model size by only 2-3% (in terms of parameters) for state-of-the-art foundation models like BEiT-3 Large. These results demonstrate that MWA provides an efficient and effective adaptation method for MLLMs, significantly broadening their applicability.


CrisisViT: A Robust Vision Transformer for Crisis Image Classification

arXiv.org Artificial Intelligence

In times of emergency, crisis response agencies need to quickly and accurately assess the situation on the ground in order to deploy relevant services and resources. However, authorities often have to make decisions based on limited information, as data on affected regions can be scarce until local response services can provide first-hand reports. Fortunately, the widespread availability of smartphones with high-quality cameras has made citizen journalism through social media a valuable source of information for crisis responders. However, analyzing the large volume of images posted by citizens requires more time and effort than is typically available. To address this issue, this paper proposes the use of state-of-the-art deep neural models for automatic image classification/tagging, specifically by adapting transformer-based architectures for crisis image classification (CrisisViT). We leverage the new Incidents1M crisis image dataset to develop a range of new transformer-based image classification models. Through experimentation over the standard Crisis image benchmark dataset, we demonstrate that the CrisisViT models significantly outperform previous approaches in emergency type, image relevance, humanitarian category, and damage severity classification. Additionally, we show that the new Incidents1M dataset can further augment the CrisisViT models resulting in an additional 1.25% absolute accuracy gain.


RoboLLM: Robotic Vision Tasks Grounded on Multimodal Large Language Models

arXiv.org Artificial Intelligence

Robotic vision applications often necessitate a wide range of visual perception tasks, such as object detection, segmentation, and identification. While there have been substantial advances in these individual tasks, integrating specialized models into a unified vision pipeline presents significant engineering challenges and costs. Recently, Multimodal Large Language Models (MLLMs) have emerged as novel backbones for various downstream tasks. We argue that leveraging the pre-training capabilities of MLLMs enables the creation of a simplified framework, thus mitigating the need for task-specific encoders. Specifically, the large-scale pretrained knowledge in MLLMs allows for easier fine-tuning to downstream robotic vision tasks and yields superior performance. We introduce the RoboLLM framework, equipped with a BEiT-3 backbone, to address all visual perception tasks in the ARMBench challenge-a large-scale robotic manipulation dataset about real-world warehouse scenarios. RoboLLM not only outperforms existing baselines but also substantially reduces the engineering burden associated with model selection and tuning. The source code is publicly available at https://github.com/longkukuhi/armbench.