Goto

Collaborating Authors

 Liu, Zhuqing


Byzantine-Robust Federated Learning over Ring-All-Reduce Distributed Computing

arXiv.org Artificial Intelligence

Federated learning (FL) has gained attention as a distributed learning paradigm for its data privacy benefits and accelerated convergence through parallel computation. Traditional FL relies on a server-client (SC) architecture, where a central server coordinates multiple clients to train a global model, but this approach faces scalability challenges due to server communication bottlenecks. To overcome this, the ring-all-reduce (RAR) architecture has been introduced, eliminating the central server and achieving bandwidth optimality. However, the tightly coupled nature of RAR's ring topology exposes it to unique Byzantine attack risks not present in SC-based FL. Despite its potential, designing Byzantine-robust RAR-based FL algorithms remains an open problem. To address this gap, we propose BRACE (Byzantine-robust ring-all-reduce), the first RAR-based FL algorithm to achieve both Byzantine robustness and communication efficiency. We provide theoretical guarantees for the convergence of BRACE under Byzantine attacks, demonstrate its bandwidth efficiency, and validate its practical effectiveness through experiments. Our work offers a foundational understanding of Byzantine-robust RAR-based FL design.


Do We Really Need to Design New Byzantine-robust Aggregation Rules?

arXiv.org Artificial Intelligence

Federated learning (FL) allows multiple clients to collaboratively train a global machine learning model through a server, without exchanging their private training data. However, the decentralized aspect of FL makes it susceptible to poisoning attacks, where malicious clients can manipulate the global model by sending altered local model updates. To counter these attacks, a variety of aggregation rules designed to be resilient to Byzantine failures have been introduced. Nonetheless, these methods can still be vulnerable to sophisticated attacks or depend on unrealistic assumptions about the server. In this paper, we demonstrate that there is no need to design new Byzantine-robust aggregation rules; instead, FL can be secured by enhancing the robustness of well-established aggregation rules. To this end, we present FoundationFL, a novel defense mechanism against poisoning attacks. FoundationFL involves the server generating synthetic updates after receiving local model updates from clients. It then applies existing Byzantine-robust foundational aggregation rules, such as Trimmed-mean or Median, to combine clients' model updates with the synthetic ones. We theoretically establish the convergence performance of FoundationFL under Byzantine settings. Comprehensive experiments across several real-world datasets validate the efficiency of our FoundationFL method.


Poisoning Attacks and Defenses to Federated Unlearning

arXiv.org Artificial Intelligence

Federated learning allows multiple clients to collaboratively train a global model with the assistance of a server. However, its distributed nature makes it susceptible to poisoning attacks, where malicious clients can compromise the global model by sending harmful local model updates to the server. To unlearn an accurate global model from a poisoned one after identifying malicious clients, federated unlearning has been introduced. Yet, current research on federated unlearning has primarily concentrated on its effectiveness and efficiency, overlooking the security challenges it presents. In this work, we bridge the gap via proposing BadUnlearn, the first poisoning attacks targeting federated unlearning. In BadUnlearn, malicious clients send specifically designed local model updates to the server during the unlearning process, aiming to ensure that the resulting unlearned model remains poisoned. To mitigate these threats, we propose UnlearnGuard, a robust federated unlearning framework that is provably robust against both existing poisoning attacks and our BadUnlearn. The core concept of UnlearnGuard is for the server to estimate the clients' local model updates during the unlearning process and employ a filtering strategy to verify the accuracy of these estimations. Theoretically, we prove that the model unlearned through UnlearnGuard closely resembles one obtained by train-from-scratch. Empirically, we show that BadUnlearn can effectively corrupt existing federated unlearning methods, while UnlearnGuard remains secure against poisoning attacks.


Federated Multi-Objective Learning

arXiv.org Artificial Intelligence

In recent years, multi-objective optimization (MOO) emerges as a foundational problem underpinning many multi-agent multi-task learning applications. However, existing algorithms in MOO literature remain limited to centralized learning settings, which do not satisfy the distributed nature and data privacy needs of such multi-agent multi-task learning applications. This motivates us to propose a new federated multi-objective learning (FMOL) framework with multiple clients distributively and collaboratively solving an MOO problem while keeping their training data private. Notably, our FMOL framework allows a different set of objective functions across different clients to support a wide range of applications, which advances and generalizes the MOO formulation to the federated learning paradigm for the first time. For this FMOL framework, we propose two new federated multi-objective optimization (FMOO) algorithms called federated multi-gradient descent averaging (FMGDA) and federated stochastic multi-gradient descent averaging (FSMGDA). Both algorithms allow local updates to significantly reduce communication costs, while achieving the {\em same} convergence rates as those of their algorithmic counterparts in the single-objective federated learning. Our extensive experiments also corroborate the efficacy of our proposed FMOO algorithms.


PRECISION: Decentralized Constrained Min-Max Learning with Low Communication and Sample Complexities

arXiv.org Artificial Intelligence

Recently, min-max optimization problems have received increasing attention due to their wide range of applications in machine learning (ML). However, most existing min-max solution techniques are either single-machine or distributed algorithms coordinated by a central server. In this paper, we focus on the decentralized min-max optimization for learning with domain constraints, where multiple agents collectively solve a nonconvex-strongly-concave min-max saddle point problem without coordination from any server. Decentralized min-max optimization problems with domain constraints underpins many important ML applications, including multi-agent ML fairness assurance, and policy evaluations in multi-agent reinforcement learning. We propose an algorithm called PRECISION (proximal gradient-tracking and stochastic recursive variance reduction) that enjoys a convergence rate of $O(1/T)$, where $T$ is the maximum number of iterations. To further reduce sample complexity, we propose PRECISION$^+$ with an adaptive batch size technique. We show that the fast $O(1/T)$ convergence of PRECISION and PRECISION$^+$ to an $\epsilon$-stationary point imply $O(\epsilon^{-2})$ communication complexity and $O(m\sqrt{n}\epsilon^{-2})$ sample complexity, where $m$ is the number of agents and $n$ is the size of dataset at each agent. To our knowledge, this is the first work that achieves $O(\epsilon^{-2})$ in both sample and communication complexities in decentralized min-max learning with domain constraints. Our experiments also corroborate the theoretical results.


DIAMOND: Taming Sample and Communication Complexities in Decentralized Bilevel Optimization

arXiv.org Artificial Intelligence

Decentralized bilevel optimization has received increasing attention recently due to its foundational role in many emerging multi-agent learning paradigms (e.g., multi-agent meta-learning and multi-agent reinforcement learning) over peer-to-peer edge networks. However, to work with the limited computation and communication capabilities of edge networks, a major challenge in developing decentralized bilevel optimization techniques is to lower sample and communication complexities. This motivates us to develop a new decentralized bilevel optimization called DIAMOND (decentralized single-timescale stochastic approximation with momentum and gradient-tracking). The contributions of this paper are as follows: i) our DIAMOND algorithm adopts a single-loop structure rather than following the natural double-loop structure of bilevel optimization, which offers low computation and implementation complexity; ii) compared to existing approaches, the DIAMOND algorithm does not require any full gradient evaluations, which further reduces both sample and computational complexities; iii) through a careful integration of momentum information and gradient tracking techniques, we show that the DIAMOND algorithm enjoys $\mathcal{O}(\epsilon^{-3/2})$ in sample and communication complexities for achieving an $\epsilon$-stationary solution, both of which are independent of the dataset sizes and significantly outperform existing works. Extensive experiments also verify our theoretical findings.


SAGDA: Achieving $\mathcal{O}(\epsilon^{-2})$ Communication Complexity in Federated Min-Max Learning

arXiv.org Artificial Intelligence

To lower the communication complexity of federated min-max learning, a natural approach is to utilize the idea of infrequent communications (through multiple local updates) same as in conventional federated learning. However, due to the more complicated inter-outer problem structure in federated min-max learning, theoretical understandings of communication complexity for federated min-max learning with infrequent communications remain very limited in the literature. This is particularly true for settings with non-i.i.d. datasets and partial client participation. To address this challenge, in this paper, we propose a new algorithmic framework called stochastic sampling averaging gradient descent ascent (SAGDA), which i) assembles stochastic gradient estimators from randomly sampled clients as control variates and ii) leverages two learning rates on both server and client sides. We show that SAGDA achieves a linear speedup in terms of both the number of clients and local update steps, which yields an $\mathcal{O}(\epsilon^{-2})$ communication complexity that is orders of magnitude lower than the state of the art. Interestingly, by noting that the standard federated stochastic gradient descent ascent (FSGDA) is in fact a control-variate-free special version of SAGDA, we immediately arrive at an $\mathcal{O}(\epsilon^{-2})$ communication complexity result for FSGDA. Therefore, through the lens of SAGDA, we also advance the current understanding on communication complexity of the standard FSGDA method for federated min-max learning.


An empirical learning-based validation procedure for simulation workflow

arXiv.org Machine Learning

Simulation workflow is a top-level model for the design and control of simulation process. It connects multiple simulation components with time and interaction restrictions to form a complete simulation system. Before the construction and evaluation of the component models, the validation of upper-layer simulation workflow is of the most importance in a simulation system. However, the methods especially for validating simulation workflow is very limit. Many of the existing validation techniques are domain-dependent with cumbersome questionnaire design and expert scoring. Therefore, this paper present an empirical learning-based validation procedure to implement a semi-automated evaluation for simulation workflow. First, representative features of general simulation workflow and their relations with validation indices are proposed. The calculation process of workflow credibility based on Analytic Hierarchy Process (AHP) is then introduced. In order to make full use of the historical data and implement more efficient validation, four learning algorithms, including back propagation neural network (BPNN), extreme learning machine (ELM), evolving new-neuron (eNFN) and fast incremental gaussian mixture model (FIGMN), are introduced for constructing the empirical relation between the workflow credibility and its features. A case study on a landing-process simulation workflow is established to test the feasibility of the proposed procedure. The experimental results also provide some useful overview of the state-of-the-art learning algorithms on the credibility evaluation of simulation models.