Goto

Collaborating Authors

 Liu, Zhizhe


Controllable Traffic Simulation through LLM-Guided Hierarchical Chain-of-Thought Reasoning

arXiv.org Artificial Intelligence

Evaluating autonomous driving systems in complex and diverse traffic scenarios through controllable simulation is essential to ensure their safety and reliability. However, existing traffic simulation methods face challenges in their controllability. To address this, this paper proposes a novel diffusion-based and LLM-enhanced traffic simulation framework. Our approach incorporates a unique chain-of-thought (CoT) mechanism, which systematically examines the hierarchical structure of traffic elements and guides LLMs to thoroughly analyze traffic scenario descriptions step by step, enhancing their understanding of complex situations. Furthermore, we propose a Frenet-frame-based cost function framework that provides LLMs with geometrically meaningful quantities, improving their grasp of spatial relationships in a scenario and enabling more accurate cost function generation. Experiments on the Waymo Open Motion Dataset (WOMD) demonstrate that our method handles more intricate descriptions, generates a broader range of scenarios in a controllable manner, and outperforms existing diffusion-based methods in terms of efficiency.


Node-oriented Spectral Filtering for Graph Neural Networks

arXiv.org Artificial Intelligence

Graph neural networks (GNNs) have shown remarkable performance on homophilic graph data while being far less impressive when handling non-homophilic graph data due to the inherent low-pass filtering property of GNNs. In general, since real-world graphs are often complex mixtures of diverse subgraph patterns, learning a universal spectral filter on the graph from the global perspective as in most current works may still suffer from great difficulty in adapting to the variation of local patterns. On the basis of the theoretical analysis of local patterns, we rethink the existing spectral filtering methods and propose the node-oriented spectral filtering for graph neural network (namely NFGNN). By estimating the node-oriented spectral filter for each node, NFGNN is provided with the capability of precise local node positioning via the generalized translated operator, thus discriminating the variations of local homophily patterns adaptively. Meanwhile, the utilization of re-parameterization brings a good trade-off between global consistency and local sensibility for learning the node-oriented spectral filters. Furthermore, we theoretically analyze the localization property of NFGNN, demonstrating that the signal after adaptive filtering is still positioned around the corresponding node. Extensive experimental results demonstrate that the proposed NFGNN achieves more favorable performance.


Unleashing the potential of GNNs via Bi-directional Knowledge Transfer

arXiv.org Artificial Intelligence

Based on the message-passing paradigm, there has been an amount of research proposing diverse and impressive feature propagation mechanisms to improve the performance of GNNs. However, less focus has been put on feature transformation, another major operation of the message-passing framework. In this paper, we first empirically investigate the performance of the feature transformation operation in several typical GNNs. Unexpectedly, we notice that GNNs do not completely free up the power of the inherent feature transformation operation. By this observation, we propose the Bi-directional Knowledge Transfer (BiKT), a plug-and-play approach to unleash the potential of the feature transformation operations without modifying the original architecture. Taking the feature transformation operation as a derived representation learning model that shares parameters with the original GNN, the direct prediction by this model provides a topological-agnostic knowledge feedback that can further instruct the learning of GNN and the feature transformations therein. On this basis, BiKT not only allows us to acquire knowledge from both the GNN and its derived model but promotes each other by injecting the knowledge into the other. In addition, a theoretical analysis is further provided to demonstrate that BiKT improves the generalization bound of the GNNs from the perspective of domain adaption. An extensive group of experiments on up to 7 datasets with 5 typical GNNs demonstrates that BiKT brings up to 0.5% - 4% performance gain over the original GNN, which means a boosted GNN is obtained. Meanwhile, the derived model also shows a powerful performance to compete with or even surpass the original GNN, enabling us to flexibly apply it independently to some other specific downstream tasks.


CETransformer: Casual Effect Estimation via Transformer Based Representation Learning

arXiv.org Artificial Intelligence

Treatment effect estimation, which refers to the estimation of causal effects and aims to measure the strength of the causal relationship, is of great importance in many fields but is a challenging problem in practice. As present, data-driven causal effect estimation faces two main challenges, i.e., selection bias and the missing of counterfactual. To address these two issues, most of the existing approaches tend to reduce the selection bias by learning a balanced representation, and then to estimate the counterfactual through the representation. However, they heavily rely on the finely hand-crafted metric functions when learning balanced representations, which generally doesn't work well for the situations where the original distribution is complicated. In this paper, we propose a CE-Transformer model for casual effect estimation via transformer based representation learning. To learn the representation of covariates(features) robustly, a self-supervised transformer is proposed, by which the correlation between covariates can be well exploited through self-attention mechanism. In addition, an adversarial network is adopted to balance the distribution of the treated and control groups in the representation space. Experimental results on three real-world datasets demonstrate the advantages of the proposed CETransformer, compared with the state-ofthe-art treatment effect estimation methods.


Adversarial Graph Disentanglement

arXiv.org Artificial Intelligence

A real-world graph has a complex topology structure, which is often formed by the interaction of different latent factors. Disentanglement of these latent factors can effectively improve the robustness and interpretability of node representation of the graph. However, most existing methods lack consideration of the intrinsic differences in links caused by factor entanglement. In this paper, we propose an Adversarial Disentangled Graph Convolutional Network (ADGCN) for disentangled graph representation learning. Specifically, a dynamic multi-component convolution layer is designed to achieve micro-disentanglement by inferring latent components that caused links between nodes. On the basis of micro-disentanglement, we further propose a macro-disentanglement adversarial regularizer that improves the separability between component distributions, thus restricting interdependence among components. Additionally, to learn collaboratively a better disentangled representation and topological structure, a diversity preserving node sampling-based progressive refinement of graph structure is proposed. The experimental results on various real-world graph data verify that our ADGCN obtains remarkably more favorable performance over currently available alternatives.