Goto

Collaborating Authors

 Liu, Yuhong


Unleashing Vecset Diffusion Model for Fast Shape Generation

arXiv.org Artificial Intelligence

3D shape generation has greatly flourished through the development of so-called "native" 3D diffusion, particularly through the Vecset Diffusion Model (VDM). While recent advancements have shown promising results in generating high-resolution 3D shapes, VDM still struggles with high-speed generation. Challenges exist because of difficulties not only in accelerating diffusion sampling but also VAE decoding in VDM, areas under-explored in previous works. To address these challenges, we present FlashVDM, a systematic framework for accelerating both VAE and DiT in VDM. For DiT, FlashVDM enables flexible diffusion sampling with as few as 5 inference steps and comparable quality, which is made possible by stabilizing consistency distillation with our newly introduced Progressive Flow Distillation. For VAE, we introduce a lightning vecset decoder equipped with Adaptive KV Selection, Hierarchical Volume Decoding, and Efficient Network Design. By exploiting the locality of the vecset and the sparsity of shape surface in the volume, our decoder drastically lowers FLOPs, minimizing the overall decoding overhead. We apply FlashVDM to Hunyuan3D-2 to obtain Hunyuan3D-2 Turbo. Through systematic evaluation, we show that our model significantly outperforms existing fast 3D generation methods, achieving comparable performance to the state-of-the-art while reducing inference time by over 45x for reconstruction and 32x for generation. Code and models are available at https://github.com/Tencent/FlashVDM.


Deep Reinforcement Learning-Based Bidding Strategies for Prosumers Trading in Double Auction-Based Transactive Energy Market

arXiv.org Artificial Intelligence

--With the large number of prosumers deploying distributed energy resources (DERs), integrating these prosumers into a transactive energy market (TEM) is a trend for the future smart grid. A community-based double auction market is considered a promising TEM that can encourage prosumers to participate and maximize social welfare. However, the traditional TEM is challenging to model explicitly due to the random bidding behavior of prosumers and uncertainties caused by the energy operation of DERs. Furthermore, although reinforcement learning algorithms provide a model-free solution to optimize prosumers' bidding strategies, their use in TEM is still challenging due to their scalability, stability, and privacy protection limitations. T o address the above challenges, in this study, we design a double auction-based TEM with multiple DERs-equipped prosumers to transparently and efficiently manage energy transactions. We also propose a deep reinforcement learning (DRL) model with distributed learning and execution to ensure the scalability and privacy of the market environment. Simulation results show that (1) the designed TEM and DRL model are robust; (2) the proposed DRL model effectively balances the energy payment and comfort satisfaction for prosumers and outperforms the state-of-the-art methods in optimizing the bidding strategies. ITH the extensive deployment of energy storage systems, solar photovoltaics (PVs), smart home appliances, and information technology, passive consumers in the traditional electricity market are gradually converted to active prosumers (producers + consumers) with distributed energy resources (DERs), who can monitor and control energy generation, consumption, storage, and transaction to achieve specific goals, such as balancing energy costs and user comfort levels [1]-[3]. However, the bi-directional energy and information flow, as well as the variability of distributed renewable energy, raises great challenges in the operation of power systems in a flexible and economically efficient way [4]. Liu are with the Department of Computer Science and Engineering, Santa Clara University, Santa Clara, CA, USA (e-mail: jun3525114@gmail.com, Li, M. Ghafouri, and J. Y an are with Concordia Institute for Information Systems Engineering, Concordia University, Montreal, QC, Canada (e-mail: {yuanliang.li, L. Hou is with Beijing University of Posts and Telecommunications, Beijing, China (e-mail: luyang.hou@bupt.edu.cn) Zhang is with the College of Information Engineering, Shenzhen University, Shenzhen, China (e-mail: zhangp@szu.edu.cn)


Position: Emergent Machina Sapiens Urge Rethinking Multi-Agent Paradigms

arXiv.org Artificial Intelligence

Artificially intelligent (AI) agents that are capable of autonomous learning and independent decision-making hold great promise for addressing complex challenges across domains like transportation, energy systems, and manufacturing. However, the surge in AI systems' design and deployment driven by various stakeholders with distinct and unaligned objectives introduces a crucial challenge: how can uncoordinated AI systems coexist and evolve harmoniously in shared environments without creating chaos? To address this, we advocate for a fundamental rethinking of existing multi-agent frameworks, such as multi-agent systems and game theory, which are largely limited to predefined rules and static objective structures. We posit that AI agents should be empowered to dynamically adjust their objectives, make compromises, form coalitions, and safely compete or cooperate through evolving relationships and social feedback. Through this paper, we call for a shift toward the emergent, self-organizing, and context-aware nature of these systems.


BoostStep: Boosting mathematical capability of Large Language Models via improved single-step reasoning

arXiv.org Artificial Intelligence

Cutting-edge large language models (LLMs) demonstrate promising performance in solving complex math problems with a divide-and-conquer pipeline and the assistance of in-context learning (ICL) examples. However, their potential for improvement is limited by two critical problems within their ICL examples: granularity-mismatch and the ensuing negative-effect noise problem. Specifically, the LLMs are capable of the dividing process yet mostly failed by inaccurate reasoning within a few conquer steps, while the ICL examples retrieved in question-grained sometimes lack relevant steps for a specific challenging reasoning step. Further, this disconnect may hinder the correct reasoning due to its irrelevance. To this end, we focus on improving the reasoning quality within each step and present BoostStep. BoostStep aligns the granularity between the retrieving and reasoning on step grained, and provides highly related ICL examples for each reasoning step with a novel `first-try' strategy. BoostStep provides more relevant examples than the coarse question-grained strategy, enhancing the model reasoning quality within each step steadily. BoostStep is a general and robust reasoning-enhancing method that not only improves standalone reasoning performance but also integrates seamlessly with Monte Carlo Tree Search methods (MCTS) to refine both candidate generation and decision-making. Quantitatively, it improves GPT-4o and Qwen2.5-Math-72B by 3.6\% and 2.0\% respectively on various mathematical benchmarks, and 7.5\% gain combined with MCTS.


Tencent Hunyuan3D-1.0: A Unified Framework for Text-to-3D and Image-to-3D Generation

arXiv.org Artificial Intelligence

While 3D generative models have greatly improved artists' workflows, the existing diffusion models for 3D generation suffer from slow generation and poor generalization. To address this issue, we propose a two-stage approach named Hunyuan3D-1.0 including a lite version and a standard version, that both support text- and image-conditioned generation. In the first stage, we employ a multi-view diffusion model that efficiently generates multi-view RGB in approximately 4 seconds. These multi-view images capture rich details of the 3D asset from different viewpoints, relaxing the tasks from single-view to multi-view reconstruction. In the second stage, we introduce a feed-forward reconstruction model that rapidly and faithfully reconstructs the 3D asset given the generated multi-view images in approximately 7 seconds. The reconstruction network learns to handle noises and in-consistency introduced by the multi-view diffusion and leverages the available information from the condition image to efficiently recover the 3D structure. Our framework involves the text-to-image model, i.e., Hunyuan-DiT, making it a unified framework to support both text- and image-conditioned 3D generation. Our standard version has 3x more parameters than our lite and other existing model. Our Hunyuan3D-1.0 achieves an impressive balance between speed and quality, significantly reducing generation time while maintaining the quality and diversity of the produced assets.


Hunyuan-Large: An Open-Source MoE Model with 52 Billion Activated Parameters by Tencent

arXiv.org Artificial Intelligence

In this paper, we introduce Hunyuan-Large, which is currently the largest open-source Transformer-based mixture of experts model, with a total of 389 billion parameters and 52 billion activation parameters, capable of handling up to 256K tokens. We conduct a thorough evaluation of Hunyuan-Large's superior performance across various benchmarks including language understanding and generation, logical reasoning, mathematical problem-solving, coding, long-context, and aggregated tasks, where it outperforms LLama3.1-70B and exhibits comparable performance when compared to the significantly larger LLama3.1-405B model. Key practice of Hunyuan-Large include large-scale synthetic data that is orders larger than in previous literature, a mixed expert routing strategy, a key-value cache compression technique, and an expert-specific learning rate strategy. Additionally, we also investigate the scaling laws and learning rate schedule of mixture of experts models, providing valuable insights and guidances for future model development and optimization. The code and checkpoints of Hunyuan-Large are released to facilitate future innovations and applications. Codes: https://github.com/Tencent/Hunyuan-Large Models: https://huggingface.co/tencent/Tencent-Hunyuan-Large


IDGen: Item Discrimination Induced Prompt Generation for LLM Evaluation

arXiv.org Artificial Intelligence

As Large Language Models (LLMs) grow increasingly adept at managing complex tasks, the evaluation set must keep pace with these advancements to ensure it remains sufficiently discriminative. Item Discrimination (ID) theory, which is widely used in educational assessment, measures the ability of individual test items to differentiate between high and low performers. Inspired by this theory, we propose an ID-induced prompt synthesis framework for evaluating LLMs to ensure the evaluation set can continually update and refine according to model abilities. Our data synthesis framework prioritizes both breadth and specificity. It can generate prompts that comprehensively evaluate the capabilities of LLMs while revealing meaningful performance differences between models, allowing for effective discrimination of their relative strengths and weaknesses across various tasks and domains. To produce high-quality data, we incorporate a self-correct mechanism into our generalization framework, and develop two models to predict prompt discrimination and difficulty score to facilitate our data synthesis framework, contributing valuable tools to evaluation data synthesis research. We apply our generated data to evaluate five SOTA models. Our data achieves an average score of 51.92, accompanied by a variance of 10.06. By contrast, previous works (i.e., SELF-INSTRUCT and WizardLM) obtain an average score exceeding 67, with a variance below 3.2. The results demonstrate that the data generated by our framework is more challenging and discriminative compared to previous works. We will release a dataset of over 3,000 carefully crafted prompts to facilitate evaluation research of LLMs.


Leveraging Machine Learning for Accurate IoT Device Identification in Dynamic Wireless Contexts

arXiv.org Artificial Intelligence

Identifying IoT devices is crucial for network monitoring, security enforcement, and inventory tracking. However, most existing identification methods rely on deep packet inspection, which raises privacy concerns and adds computational complexity. More importantly, existing works overlook the impact of wireless channel dynamics on the accuracy of layer-2 features, thereby limiting their effectiveness in real-world scenarios. In this work, we define and use the latency of specific probe-response packet exchanges, referred to as "device latency," as the main feature for device identification. Additionally, we reveal the critical impact of wireless channel dynamics on the accuracy of device identification based on device latency. Specifically, this work introduces "accumulation score" as a novel approach to capturing fine-grained channel dynamics and their impact on device latency when training machine learning models. We implement the proposed methods and measure the accuracy and overhead of device identification in real-world scenarios. The results confirm that by incorporating the accumulation score for balanced data collection and training machine learning algorithms, we achieve an F1 score of over 97% for device identification, even amidst wireless channel dynamics, a significant improvement over the 75% F1 score achieved by disregarding the impact of channel dynamics on data collection and device latency.


A Multi-Faceted Evaluation Framework for Assessing Synthetic Data Generated by Large Language Models

arXiv.org Artificial Intelligence

The rapid advancements in generative AI and large language models (LLMs) have opened up new avenues for producing synthetic data, particularly in the realm of structured tabular formats, such as product reviews. Despite the potential benefits, concerns regarding privacy leakage have surfaced, especially when personal information is utilized in the training datasets. In addition, there is an absence of a comprehensive evaluation framework capable of quantitatively measuring the quality of the generated synthetic data and their utility for downstream tasks. In response to this gap, we introduce SynEval, an open-source evaluation framework designed to assess the fidelity, utility, and privacy preservation of synthetically generated tabular data via a suite of diverse evaluation metrics. We validate the efficacy of our proposed framework - SynEval - by applying it to synthetic product review data generated by three state-of-the-art LLMs: ChatGPT, Claude, and Llama. Our experimental findings illuminate the trade-offs between various evaluation metrics in the context of synthetic data generation. Furthermore, SynEval stands as a critical instrument for researchers and practitioners engaged with synthetic tabular data,, empowering them to judiciously determine the suitability of the generated data for their specific applications, with an emphasis on upholding user privacy.


Hybrid-Task Meta-Learning: A Graph Neural Network Approach for Scalable and Transferable Bandwidth Allocation

arXiv.org Artificial Intelligence

In this paper, we develop a deep learning-based bandwidth allocation policy that is: 1) scalable with the number of users and 2) transferable to different communication scenarios, such as non-stationary wireless channels, different quality-of-service (QoS) requirements, and dynamically available resources. To support scalability, the bandwidth allocation policy is represented by a graph neural network (GNN), with which the number of training parameters does not change with the number of users. To enable the generalization of the GNN, we develop a hybrid-task meta-learning (HML) algorithm that trains the initial parameters of the GNN with different communication scenarios during meta-training. Next, during meta-testing, a few samples are used to fine-tune the GNN with unseen communication scenarios. Simulation results demonstrate that our HML approach can improve the initial performance by $8.79\%$, and sampling efficiency by $73\%$, compared with existing benchmarks. After fine-tuning, our near-optimal GNN-based policy can achieve close to the same reward with much lower inference complexity compared to the optimal policy obtained using iterative optimization.