Goto

Collaborating Authors

 Liu, Xuchen


Underwater motions analysis and control of a coupling-tiltable unmanned aerial-aquatic quadrotor

arXiv.org Artificial Intelligence

This paper proposes a method for analyzing a series of potential motions in a coupling-tiltable aerial-aquatic quadrotor based on its nonlinear dynamics. Some characteristics and constraints derived by this method are specified as Singular Thrust Tilt Angles (STTAs), utilizing to generate motions including planar motions. A switch-based control scheme addresses issues of control direction uncertainty inherent to the mechanical structure by incorporating a saturated Nussbaum function. A high-fidelity simulation environment incorporating a comprehensive hydrodynamic model is built based on a Hardware-In-The-Loop (HITL) setup with Gazebo and a flight control board. The experiments validate the effectiveness of the absolute and quasi planar motions, which cannot be achieved by conventional quadrotors, and demonstrate stable performance when the pitch or roll angle is activated in the auxiliary control channel.


InDL: A New Dataset and Benchmark for In-Diagram Logic Interpretation based on Visual Illusion

arXiv.org Artificial Intelligence

This paper introduces a novel approach to evaluating deep learning models' capacity for in-diagram logic interpretation. Leveraging the intriguing realm of visual illusions, we establish a unique dataset, InDL, designed to rigorously test and benchmark these models. Deep learning has witnessed remarkable progress in domains such as computer vision and natural language processing. However, models often stumble in tasks requiring logical reasoning due to their inherent 'black box' characteristics, which obscure the decision-making process. Our work presents a new lens to understand these models better by focusing on their handling of visual illusions -- a complex interplay of perception and logic. We utilize six classic geometric optical illusions to create a comparative framework between human and machine visual perception. This methodology offers a quantifiable measure to rank models, elucidating potential weaknesses and providing actionable insights for model improvements. Our experimental results affirm the efficacy of our benchmarking strategy, demonstrating its ability to effectively rank models based on their logic interpretation ability. As part of our commitment to reproducible research, the source code and datasets will be made publicly available at https://github.com/rabbit-magic-wh/InDL


TJ-FlyingFish: Design and Implementation of an Aerial-Aquatic Quadrotor with Tiltable Propulsion Units

arXiv.org Artificial Intelligence

Aerial-aquatic vehicles are capable to move in the two most dominant fluids, making them more promising for a wide range of applications. We propose a prototype with special designs for propulsion and thruster configuration to cope with the vast differences in the fluid properties of water and air. For propulsion, the operating range is switched for the different mediums by the dual-speed propulsion unit, providing sufficient thrust and also ensuring output efficiency. For thruster configuration, thrust vectoring is realized by the rotation of the propulsion unit around the mount arm, thus enhancing the underwater maneuverability. This paper presents a quadrotor prototype of this concept and the design details and realization in practice.