Goto

Collaborating Authors

 Liu, Xubo


Fast data inversion for high-dimensional dynamical systems from noisy measurements

arXiv.org Machine Learning

In this work, we develop a scalable approach for a flexible latent factor model for high-dimensional dynamical systems. Each latent factor process has its own correlation and variance parameters, and the orthogonal factor loading matrix can be either fixed or estimated. We utilize an orthogonal factor loading matrix that avoids computing the inversion of the posterior covariance matrix at each time of the Kalman filter, and derive closed-form expressions in an expectation-maximization algorithm for parameter estimation, which substantially reduces the computational complexity without approximation. Our study is motivated by inversely estimating slow slip events from geodetic data, such as continuous GPS measurements. Extensive simulated studies illustrate higher accuracy and scalability of our approach compared to alternatives. By applying our method to geodetic measurements in the Cascadia region, our estimated slip better agrees with independently measured seismic data of tremor events. The substantial acceleration from our method enables the use of massive noisy data for geological hazard quantification and other applications.


RiTTA: Modeling Event Relations in Text-to-Audio Generation

arXiv.org Artificial Intelligence

Despite significant advancements in Text-to-Audio (TTA) generation models achieving high-fidelity audio with fine-grained context understanding, they struggle to model the relations between audio events described in the input text. However, previous TTA methods have not systematically explored audio event relation modeling, nor have they proposed frameworks to enhance this capability. In this work, we systematically study audio event relation modeling in TTA generation models. We first establish a benchmark for this task by: 1. proposing a comprehensive relation corpus covering all potential relations in real-world scenarios; 2. introducing a new audio event corpus encompassing commonly heard audios; and 3. proposing new evaluation metrics to assess audio event relation modeling from various perspectives. Furthermore, we propose a finetuning framework to enhance existing TTA models ability to model audio events relation. Code is available at: https://github.com/yuhanghe01/RiTTA


Scaling Transformers for Low-Bitrate High-Quality Speech Coding

arXiv.org Artificial Intelligence

The tokenization of speech with neural audio codec models is a vital part of modern AI pipelines for the generation or understanding of speech, alone or in a multimodal context. Traditionally such tokenization models have concentrated on low parameter-count architectures using only components with strong inductive biases. In this work we show that by scaling a transformer architecture with large parameter count to this problem, and applying a flexible Finite Scalar Quantization (FSQ) based bottleneck, it is possible to reach state-of-the-art speech quality at extremely low bit-rates of 400 or 700 bits-per-second. The trained models strongly out-perform existing baselines in both objective and subjective tests. Compressed coding of audio and speech data in digital format has been an active area of research since the 1970s, and reached particular prominence in the late 1990s with the emergence of mp3 (Painter & Spanias, 2000).


Universal Sound Separation with Self-Supervised Audio Masked Autoencoder

arXiv.org Artificial Intelligence

Universal sound separation (USS) is a task of separating mixtures of arbitrary sound sources. Typically, universal separation models are trained from scratch in a supervised manner, using labeled data. Self-supervised learning (SSL) is an emerging deep learning approach that leverages unlabeled data to obtain task-agnostic representations, which can benefit many downstream tasks. In this paper, we propose integrating a self-supervised pre-trained model, namely the audio masked autoencoder (A-MAE), into a universal sound separation system to enhance its separation performance. We employ two strategies to utilize SSL embeddings: freezing or updating the parameters of A-MAE during fine-tuning. The SSL embeddings are concatenated with the short-time Fourier transform (STFT) to serve as input features for the separation model. We evaluate our methods on the AudioSet dataset, and the experimental results indicate that the proposed methods successfully enhance the separation performance of a state-of-the-art ResUNet-based USS model.


ComposerX: Multi-Agent Symbolic Music Composition with LLMs

arXiv.org Artificial Intelligence

Music composition represents the creative side of humanity, and itself is a complex task that requires abilities to understand and generate information with long dependency and harmony constraints. While demonstrating impressive capabilities in STEM subjects, current LLMs easily fail in this task, generating ill-written music even when equipped with modern techniques like In-Context-Learning and Chain-of-Thoughts. To further explore and enhance LLMs' potential in music composition by leveraging their reasoning ability and the large knowledge base in music history and theory, we propose ComposerX, an agent-based symbolic music generation framework. We find that applying a multi-agent approach significantly improves the music composition quality of GPT-4. The results demonstrate that ComposerX is capable of producing coherent polyphonic music compositions with captivating melodies, while adhering to user instructions.


T-CLAP: Temporal-Enhanced Contrastive Language-Audio Pretraining

arXiv.org Artificial Intelligence

Contrastive language-audio pretraining~(CLAP) has been developed to align the representations of audio and language, achieving remarkable performance in retrieval and classification tasks. However, current CLAP struggles to capture temporal information within audio and text features, presenting substantial limitations for tasks such as audio retrieval and generation. To address this gap, we introduce T-CLAP, a temporal-enhanced CLAP model. We use Large Language Models~(LLMs) and mixed-up strategies to generate temporal-contrastive captions for audio clips from extensive audio-text datasets. Subsequently, a new temporal-focused contrastive loss is designed to fine-tune the CLAP model by incorporating these synthetic data. We conduct comprehensive experiments and analysis in multiple downstream tasks. T-CLAP shows improved capability in capturing the temporal relationship of sound events and outperforms state-of-the-art models by a significant margin.


Retrieval-Augmented Text-to-Audio Generation

arXiv.org Artificial Intelligence

Despite recent progress in text-to-audio (TTA) generation, we show that the state-of-the-art models, such as AudioLDM, trained on datasets with an imbalanced class distribution, such as AudioCaps, are biased in their generation performance. Specifically, they excel in generating common audio classes while underperforming in the rare ones, thus degrading the overall generation performance. We refer to this problem as long-tailed text-to-audio generation. To address this issue, we propose a simple retrieval-augmented approach for TTA models. Specifically, given an input text prompt, we first leverage a Contrastive Language Audio Pretraining (CLAP) model to retrieve relevant text-audio pairs. The features of the retrieved audio-text data are then used as additional conditions to guide the learning of TTA models. We enhance AudioLDM with our proposed approach and denote the resulting augmented system as Re-AudioLDM. On the AudioCaps dataset, Re-AudioLDM achieves a state-of-the-art Frechet Audio Distance (FAD) of 1.37, outperforming the existing approaches by a large margin. Furthermore, we show that Re-AudioLDM can generate realistic audio for complex scenes, rare audio classes, and even unseen audio types, indicating its potential in TTA tasks.


WavJourney: Compositional Audio Creation with Large Language Models

arXiv.org Artificial Intelligence

Despite breakthroughs in audio generation models, their capabilities are often confined to domain-specific conditions such as speech transcriptions and audio captions. However, real-world audio creation aims to generate harmonious audio containing various elements such as speech, music, and sound effects with controllable conditions, which is challenging to address using existing audio generation systems. We present WavJourney, a novel framework that leverages Large Language Models (LLMs) to connect various audio models for audio creation. WavJourney allows users to create storytelling audio content with diverse audio elements simply from textual descriptions. Specifically, given a text instruction, WavJourney first prompts LLMs to generate an audio script that serves as a structured semantic representation of audio elements. The audio script is then converted into a computer program, where each line of the program calls a task-specific audio generation model or computational operation function. The computer program is then executed to obtain a compositional and interpretable solution for audio creation. Experimental results suggest that WavJourney is capable of synthesizing realistic audio aligned with textually-described semantic, spatial and temporal conditions, achieving state-of-the-art results on text-to-audio generation benchmarks. Additionally, we introduce a new multi-genre story benchmark. Subjective evaluations demonstrate the potential of WavJourney in crafting engaging storytelling audio content from text. We further demonstrate that WavJourney can facilitate human-machine co-creation in multi-round dialogues. To foster future research, the code and synthesized audio are available at: https://audio-agi.github.io/WavJourney_demopage/.


Separate Anything You Describe

arXiv.org Artificial Intelligence

Language-queried audio source separation (LASS) is a new paradigm for computational auditory scene analysis (CASA). LASS aims to separate a target sound from an audio mixture given a natural language query, which provides a natural and scalable interface for digital audio applications. Recent works on LASS, despite attaining promising separation performance on specific sources (e.g., musical instruments, limited classes of audio events), are unable to separate audio concepts in the open domain. In this work, we introduce AudioSep, a foundation model for open-domain audio source separation with natural language queries. We train AudioSep on large-scale multimodal datasets and extensively evaluate its capabilities on numerous tasks including audio event separation, musical instrument separation, and speech enhancement. AudioSep demonstrates strong separation performance and impressive zero-shot generalization ability using audio captions or text labels as queries, substantially outperforming previous audio-queried and language-queried sound separation models. For reproducibility of this work, we will release the source code, evaluation benchmark and pre-trained model at: https://github.com/Audio-AGI/AudioSep.


Text-Driven Foley Sound Generation With Latent Diffusion Model

arXiv.org Artificial Intelligence

Foley sound generation aims to synthesise the background sound for multimedia content. Previous models usually employ a large development set with labels as input (e.g., single numbers or one-hot vector). In this work, we propose a diffusion model based system for Foley sound generation with text conditions. To alleviate the data scarcity issue, our model is initially pre-trained with large-scale datasets and fine-tuned to this task via transfer learning using the contrastive language-audio pertaining (CLAP) technique. We have observed that the feature embedding extracted by the text encoder can significantly affect the performance of the generation model. Hence, we introduce a trainable layer after the encoder to improve the text embedding produced by the encoder. In addition, we further refine the generated waveform by generating multiple candidate audio clips simultaneously and selecting the best one, which is determined in terms of the similarity score between the embedding of the candidate clips and the embedding of the target text label. Using the proposed method, our system ranks ${1}^{st}$ among the systems submitted to DCASE Challenge 2023 Task 7. The results of the ablation studies illustrate that the proposed techniques significantly improve sound generation performance. The codes for implementing the proposed system are available online.