Goto

Collaborating Authors

 Liu, Xiyang


Insufficient Statistics Perturbation: Stable Estimators for Private Least Squares

arXiv.org Machine Learning

We present a sample- and time-efficient differentially private algorithm for ordinary least squares, with error that depends linearly on the dimension and is independent of the condition number of $X^\top X$, where $X$ is the design matrix. All prior private algorithms for this task require either $d^{3/2}$ examples, error growing polynomially with the condition number, or exponential time. Our near-optimal accuracy guarantee holds for any dataset with bounded statistical leverage and bounded residuals. Technically, we build on the approach of Brown et al. (2023) for private mean estimation, adding scaled noise to a carefully designed stable nonprivate estimator of the empirical regression vector.


Machine Learning-Aided Efficient Decoding of Reed-Muller Subcodes

arXiv.org Artificial Intelligence

Reed-Muller (RM) codes achieve the capacity of general binary-input memoryless symmetric channels and are conjectured to have a comparable performance to that of random codes in terms of scaling laws. However, such results are established assuming maximum-likelihood decoders for general code parameters. Also, RM codes only admit limited sets of rates. Efficient decoders such as successive cancellation list (SCL) decoder and recently-introduced recursive projection-aggregation (RPA) decoders are available for RM codes at finite lengths. In this paper, we focus on subcodes of RM codes with flexible rates. We first extend the RPA decoding algorithm to RM subcodes. To lower the complexity of our decoding algorithm, referred to as subRPA, we investigate different approaches to prune the projections. Next, we derive the soft-decision based version of our algorithm, called soft-subRPA, that not only improves upon the performance of subRPA but also enables a differentiable decoding algorithm. Building upon the soft-subRPA algorithm, we then provide a framework for training a machine learning (ML) model to search for \textit{good} sets of projections that minimize the decoding error rate. Training our ML model enables achieving very close to the performance of full-projection decoding with a significantly smaller number of projections. We also show that the choice of the projections in decoding RM subcodes matters significantly, and our ML-aided projection pruning scheme is able to find a \textit{good} selection, i.e., with negligible performance degradation compared to the full-projection case, given a reasonable number of projections.


Near Optimal Private and Robust Linear Regression

arXiv.org Artificial Intelligence

We study the canonical statistical estimation problem of linear regression from $n$ i.i.d.~examples under $(\varepsilon,\delta)$-differential privacy when some response variables are adversarially corrupted. We propose a variant of the popular differentially private stochastic gradient descent (DP-SGD) algorithm with two innovations: a full-batch gradient descent to improve sample complexity and a novel adaptive clipping to guarantee robustness. When there is no adversarial corruption, this algorithm improves upon the existing state-of-the-art approach and achieves a near optimal sample complexity. Under label-corruption, this is the first efficient linear regression algorithm to guarantee both $(\varepsilon,\delta)$-DP and robustness. Synthetic experiments confirm the superiority of our approach.


Differential privacy and robust statistics in high dimensions

arXiv.org Machine Learning

We introduce a universal framework for characterizing the statistical efficiency of a statistical estimation problem with differential privacy guarantees. Our framework, which we call High-dimensional Propose-Test-Release (HPTR), builds upon three crucial components: the exponential mechanism, robust statistics, and the Propose-Test-Release mechanism. Gluing all these together is the concept of resilience, which is central to robust statistical estimation. Resilience guides the design of the algorithm, the sensitivity analysis, and the success probability analysis of the test step in Propose-Test-Release. The key insight is that if we design an exponential mechanism that accesses the data only via one-dimensional robust statistics, then the resulting local sensitivity can be dramatically reduced. Using resilience, we can provide tight local sensitivity bounds. These tight bounds readily translate into near-optimal utility guarantees in several cases. We give a general recipe for applying HPTR to a given instance of a statistical estimation problem and demonstrate it on canonical problems of mean estimation, linear regression, covariance estimation, and principal component analysis. We introduce a general utility analysis technique that proves that HPTR nearly achieves the optimal sample complexity under several scenarios studied in the literature.


KO codes: Inventing Nonlinear Encoding and Decoding for Reliable Wireless Communication via Deep-learning

arXiv.org Artificial Intelligence

Landmark codes underpin reliable physical layer communication, e.g., Reed-Muller, BCH, Convolution, Turbo, LDPC and Polar codes: each is a linear code and represents a mathematical breakthrough. The impact on humanity is huge: each of these codes has been used in global wireless communication standards (satellite, WiFi, cellular). Reliability of communication over the classical additive white Gaussian noise (AWGN) channel enables benchmarking and ranking of the different codes. In this paper, we construct KO codes, a computationaly efficient family of deep-learning driven (encoder, decoder) pairs that outperform the state-of-the-art reliability performance on the standardized AWGN channel. KO codes beat state-of-the-art Reed-Muller and Polar codes, under the low-complexity successive cancellation decoding, in the challenging short-to-medium block length regime on the AWGN channel. We show that the gains of KO codes are primarily due to the nonlinear mapping of information bits directly to transmit real symbols (bypassing modulation) and yet possess an efficient, high performance decoder. The key technical innovation that renders this possible is design of a novel family of neural architectures inspired by the computation tree of the {\bf K}ronecker {\bf O}peration (KO) central to Reed-Muller and Polar codes. These architectures pave way for the discovery of a much richer class of hitherto unexplored nonlinear algebraic structures. The code is available at \href{https://github.com/deepcomm/KOcodes}{https://github.com/deepcomm/KOcodes}


Robust and Differentially Private Mean Estimation

arXiv.org Machine Learning

When releasing database statistics on a collection of entries from individuals, we would ideally like to make it impossible to reverse-engineer each individual's potentially sensitive information. Privacy-preserving techniques add just enough randomness tailored to the statistical task to guarantee protection. At the same time, it is becoming increasingly common to apply such techniques to databases collected from multiple sources, not all of which can be trusted. Emerging data access frameworks, such as federated analyses across users' devices or data silos [51], make it easier to temper with this collected dataset, leaving private statistical analyses vulnerable to a malicious corruption of a fraction of the data. Differential privacy has emerged as a widely accepted de facto measure of privacy, which is now a standard in releasing the statistics of the U.S. Census data [2] statistics and also deployed in real-world commercial systems [76, 41, 42]. A statistical analysis is said to be differentially private if the likelihood of the (randomized) outcome does not change significantly when a single entry is replaced by another arbitrary entry (formally defined in §1.1). This provides a strong privacy guarantee: even a powerful adversary who knows all the other entries in the database cannot confidently identify whether a particular individual is participating in the database based on the outcome of the analysis, providing plausible deniability, central to protecting an individual's privacy. Despite more than a decade of literature focused in designing private mechanisms for various statistical and learning tasks, only recently have some of the most fundamental questions been resolved. In this paper, we focus on one of the most canonical problems in statistics: estimating the mean of a distribution from i.i.d.