Goto

Collaborating Authors

 Liu, Xiaoyuan


VisFactor: Benchmarking Fundamental Visual Cognition in Multimodal Large Language Models

arXiv.org Artificial Intelligence

Multimodal Large Language Models (MLLMs) have demonstrated remarkable advancements in multimodal understanding; however, their fundamental visual cognitive abilities remain largely underexplored. To bridge this gap, we introduce VisFactor, a novel benchmark derived from the Factor-Referenced Cognitive Test (FRCT), a well-established psychometric assessment of human cognition. VisFactor digitalizes vision-related FRCT subtests to systematically evaluate MLLMs across essential visual cognitive tasks including spatial reasoning, perceptual speed, and pattern recognition. We present a comprehensive evaluation of state-of-the-art MLLMs, such as GPT-4o, Gemini-Pro, and Qwen-VL, using VisFactor under diverse prompting strategies like Chain-of-Thought and Multi-Agent Debate. Our findings reveal a concerning deficiency in current MLLMs' fundamental visual cognition, with performance frequently approaching random guessing and showing only marginal improvements even with advanced prompting techniques. These results underscore the critical need for focused research to enhance the core visual reasoning capabilities of MLLMs. To foster further investigation in this area, we release our VisFactor benchmark at https://github.com/CUHK-ARISE/VisFactor.


VLMs as GeoGuessr Masters: Exceptional Performance, Hidden Biases, and Privacy Risks

arXiv.org Artificial Intelligence

Visual-Language Models (VLMs) have shown remarkable performance across various tasks, particularly in recognizing geographic information from images. However, significant challenges remain, including biases and privacy concerns. To systematically address these issues in the context of geographic information recognition, we introduce a benchmark dataset consisting of 1,200 images paired with detailed geographic metadata. Evaluating four VLMs, we find that while these models demonstrate the ability to recognize geographic information from images, achieving up to $53.8\%$ accuracy in city prediction, they exhibit significant regional biases. Specifically, performance is substantially higher for economically developed and densely populated regions compared to less developed ($-12.5\%$) and sparsely populated ($-17.0\%$) areas. Moreover, the models exhibit regional biases, frequently overpredicting certain locations; for instance, they consistently predict Sydney for images taken in Australia. The strong performance of VLMs also raises privacy concerns, particularly for users who share images online without the intent of being identified. Our code and dataset are publicly available at https://github.com/uscnlp-lime/FairLocator.


Can't See the Forest for the Trees: Benchmarking Multimodal Safety Awareness for Multimodal LLMs

arXiv.org Artificial Intelligence

Multimodal Large Language Models (MLLMs) have expanded the capabilities of traditional language models by enabling interaction through both text and images. However, ensuring the safety of these models remains a significant challenge, particularly in accurately identifying whether multimodal content is safe or unsafe-a capability we term safety awareness. In this paper, we introduce MMSafeAware, the first comprehensive multimodal safety awareness benchmark designed to evaluate MLLMs across 29 safety scenarios with 1500 carefully curated image-prompt pairs. MMSafeAware includes both unsafe and over-safety subsets to assess models abilities to correctly identify unsafe content and avoid over-sensitivity that can hinder helpfulness. Evaluating nine widely used MLLMs using MMSafeAware reveals that current models are not sufficiently safe and often overly sensitive; for example, GPT-4V misclassifies 36.1% of unsafe inputs as safe and 59.9% of benign inputs as unsafe. We further explore three methods to improve safety awareness-prompting-based approaches, visual contrastive decoding, and vision-centric reasoning fine-tuning-but find that none achieve satisfactory performance. Our findings highlight the profound challenges in developing MLLMs with robust safety awareness, underscoring the need for further research in this area. All the code and data will be publicly available to facilitate future research.


Can LLMs Design Good Questions Based on Context?

arXiv.org Artificial Intelligence

This paper evaluates questions generated by LLMs from context, comparing them to human-generated questions across six dimensions. We introduce an automated LLM-based evaluation method, focusing on aspects like question length, type, context coverage, and answerability. Our findings highlight unique characteristics of LLM-generated questions, contributing insights that can support further research in question quality and downstream applications.


DeServe: Towards Affordable Offline LLM Inference via Decentralization

arXiv.org Artificial Intelligence

The rapid growth of generative AI and its integration into everyday workflows have significantly increased the demand for large language model (LLM) inference services. While proprietary models remain popular, recent advancements in open-source LLMs have positioned them as strong contenders. However, deploying these models is often constrained by the high costs and limited availability of GPU resources. In response, this paper presents the design of a decentralized offline serving system for LLM inference. Utilizing idle GPU resources, our proposed system, DeServe, decentralizes access to LLMs at a lower cost. DeServe specifically addresses key challenges in optimizing serving throughput in high-latency network environments. Experiments demonstrate that DeServe achieves a 6.7x-12.6x


Insight Over Sight? Exploring the Vision-Knowledge Conflicts in Multimodal LLMs

arXiv.org Artificial Intelligence

This paper explores the problem of commonsense-level vision-knowledge conflict in Multimodal Large Language Models (MLLMs), where visual information contradicts model's internal commonsense knowledge (see Figure 1). To study this issue, we introduce an automated pipeline, augmented with human-in-the-loop quality control, to establish a benchmark aimed at simulating and assessing the conflicts in MLLMs. Utilizing this pipeline, we have crafted a diagnostic benchmark comprising 374 original images and 1,122 high-quality question-answer (QA) pairs. This benchmark covers two types of conflict target and three question difficulty levels, providing a thorough assessment tool. Through this benchmark, we evaluate the conflict-resolution capabilities of nine representative MLLMs across various model families and find a noticeable over-reliance on textual queries. Drawing on these findings, we propose a novel prompting strategy, "Focus-on-Vision" (FoV), which markedly enhances MLLMs' ability to favor visual data over conflicting textual knowledge. Our detailed analysis and the newly proposed strategy significantly advance the understanding and mitigating of vision-knowledge conflicts in MLLMs. The data and code are made publicly available.


DDFAD: Dataset Distillation Framework for Audio Data

arXiv.org Artificial Intelligence

Deep neural networks (DNNs) have achieved significant success in numerous applications. The remarkable performance of DNNs is largely attributed to the availability of massive, high-quality training datasets. However, processing such massive training data requires huge computational and storage resources. Dataset distillation is a promising solution to this problem, offering the capability to compress a large dataset into a smaller distilled dataset. The model trained on the distilled dataset can achieve comparable performance to the model trained on the whole dataset. While dataset distillation has been demonstrated in image data, none have explored dataset distillation for audio data. In this work, for the first time, we propose a Dataset Distillation Framework for Audio Data (DDFAD). Specifically, we first propose the Fused Differential MFCC (FD-MFCC) as extracted features for audio data. After that, the FD-MFCC is distilled through the matching training trajectory distillation method. Finally, we propose an audio signal reconstruction algorithm based on the Griffin-Lim Algorithm to reconstruct the audio signal from the distilled FD-MFCC. Extensive experiments demonstrate the effectiveness of DDFAD on various audio datasets. In addition, we show that DDFAD has promising application prospects in many applications, such as continual learning and neural architecture search.


UniFed: All-In-One Federated Learning Platform to Unify Open-Source Frameworks

arXiv.org Artificial Intelligence

Federated Learning (FL) has become a practical and widely adopted distributed learning paradigm. However, the lack of a comprehensive and standardized solution covering diverse use cases makes it challenging to use in practice. In addition, selecting an appropriate FL framework for a specific use case can be a daunting task. In this work, we present UniFed, the first unified platform for standardizing existing open-source FL frameworks. The platform streamlines the end-to-end workflow for distributed experimentation and deployment, encompassing 11 popular open-source FL frameworks. In particular, to address the substantial variations in workflows and data formats, UniFed introduces a configuration-based schema-enforced task specification, offering 20 editable fields. UniFed also provides functionalities such as distributed execution management, logging, and data analysis. With UniFed, we evaluate and compare 11 popular FL frameworks from the perspectives of functionality, privacy protection, and performance, through conducting developer surveys and code-level investigation. We collect 15 diverse FL scenario setups (e.g., horizontal and vertical settings) for FL framework evaluation. This comprehensive evaluation allows us to analyze both model and system performance, providing detailed comparisons and offering recommendations for framework selection. UniFed simplifies the process of selecting and utilizing the appropriate FL framework for specific use cases, while enabling standardized distributed experimentation and deployment. Our results and analysis based on experiments with up to 178 distributed nodes provide valuable system design and deployment insights, aiming to empower practitioners in their pursuit of effective FL solutions.


Effective and Efficient Federated Tree Learning on Hybrid Data

arXiv.org Artificial Intelligence

Federated learning has emerged as a promising distributed learning paradigm that facilitates collaborative learning among multiple parties without transferring raw data. However, most existing federated learning studies focus on either horizontal or vertical data settings, where the data of different parties are assumed to be from the same feature or sample space. In practice, a common scenario is the hybrid data setting, where data from different parties may differ both in the features and samples. To address this, we propose HybridTree, a novel federated learning approach that enables federated tree learning on hybrid data. We observe the existence of consistent split rules in trees. With the help of these split rules, we theoretically show that the knowledge of parties can be incorporated into the lower layers of a tree. Based on our theoretical analysis, we propose a layer-level solution that does not need frequent communication traffic to train a tree. Our experiments demonstrate that HybridTree can achieve comparable accuracy to the centralized setting with low computational and communication overhead. HybridTree can achieve up to 8 times speedup compared with the other baselines.


Model Inversion Attacks on Homogeneous and Heterogeneous Graph Neural Networks

arXiv.org Artificial Intelligence

Recently, Graph Neural Networks (GNNs), including Homogeneous Graph Neural Networks (HomoGNNs) and Heterogeneous Graph Neural Networks (HeteGNNs), have made remarkable progress in many physical scenarios, especially in communication applications. Despite achieving great success, the privacy issue of such models has also received considerable attention. Previous studies have shown that given a well-fitted target GNN, the attacker can reconstruct the sensitive training graph of this model via model inversion attacks, leading to significant privacy worries for the AI service provider. We advocate that the vulnerability comes from the target GNN itself and the prior knowledge about the shared properties in real-world graphs. Inspired by this, we propose a novel model inversion attack method on HomoGNNs and HeteGNNs, namely HomoGMI and HeteGMI. Specifically, HomoGMI and HeteGMI are gradient-descent-based optimization methods that aim to maximize the cross-entropy loss on the target GNN and the $1^{st}$ and $2^{nd}$-order proximities on the reconstructed graph. Notably, to the best of our knowledge, HeteGMI is the first attempt to perform model inversion attacks on HeteGNNs. Extensive experiments on multiple benchmarks demonstrate that the proposed method can achieve better performance than the competitors.