Goto

Collaborating Authors

 Liu, Xiaotian


Deep Reinforcement Learning for Solving Management Problems: Towards A Large Management Mode

arXiv.org Artificial Intelligence

We introduce a deep reinforcement learning (DRL) approach for solving management problems including inventory management, dynamic pricing, and recommendation. This DRL approach has the potential to lead to a large management model based on certain transformer neural network structures, resulting in an artificial general intelligence paradigm for various management tasks. Traditional methods have limitations for solving complex real-world problems, and we demonstrate how DRL can surpass existing heuristic approaches for solving management tasks. We aim to solve the problems in a unified framework, considering the interconnections between different tasks. Central to our methodology is the development of a foundational decision model coordinating decisions across the different domains through generative decision-making. Our experimental results affirm the effectiveness of our DRL-based framework in complex and dynamic business environments. This work opens new pathways for the application of DRL in management problems, highlighting its potential to revolutionize traditional business management.


pyRDDLGym: From RDDL to Gym Environments

arXiv.org Artificial Intelligence

Reinforcement Learning (RL) Sutton and Barto [2018] and Probabilistic planning Puterman [2014] are two research branches that address stochastic problems, often under the Markov assumption for state dynamics. The planning approach requires a given model, while the learning approach improves through repeated interaction with an environment, which can be viewed as a black box. Thus, the tools and the benchmarks for these two branches have grown apart. Learning agents do not require to be able to simulate model-based transitions, and thus frameworks such as OpenAI Gym Brockman et al. [2016] have become a standard, serving also as an interface for third-party benchmarks such as Todorov et al. [2012], Bellemare et al. [2013] and more. As the model is not necessary for solving the learning problem, the environments are hard-coded in a programming language. This has several downsides; if one does wish to see the model describing the environment, it has to be reverse-engineered from the environment framework, complex problems can result in a significant development period, code bugs may make their way into the environment and finally, there is no clean way to verify the model or reuse it directly. Thus, the creation of a verified acceptable benchmark is a challenging task. Planning agents on the other hand can interact with an environment Sanner [2010a], but in many cases simulate the model within the planning agent in order to solve the problem Keller and Eyerich [2012]. The planning community has also come up with formal description languages for various types of problems; these include the Planning Domain Definition Language (PDDL) Aeronautiques et al. [1998] for classical planning problems, PDDL2.1 Fox and Long [2003] for problems involving time and continuous variables, PPDDL Bryce and Buet [2008] for classical planning problems with action probabilistic effects and rewards, and Relational Dynamic Influence Diagram Language (RDDL)


Improving Generalization in Task-oriented Dialogues with Workflows and Action Plans

arXiv.org Artificial Intelligence

Task-oriented dialogue is difficult in part because it involves understanding user intent, collecting information from the user, executing API calls, and generating helpful and fluent responses. However, for complex tasks one must also correctly do all of these things over multiple steps, and in a specific order. While large pre-trained language models can be fine-tuned end-to-end to create multi-step task-oriented dialogue agents that generate fluent text, our experiments confirm that this approach alone cannot reliably perform new multi-step tasks that are unseen during training. To address these limitations, we augment the dialogue contexts given to \textmd{text2text} transformers with known \textit{valid workflow names} and \textit{action plans}. Action plans consist of sequences of actions required to accomplish a task, and are encoded as simple sequences of keywords (e.g. verify-identity, pull-up-account, reset-password, etc.). We perform extensive experiments on the Action-Based Conversations Dataset (ABCD) with T5-small, base and large models, and show that such models: a) are able to more readily generalize to unseen workflows by following the provided plan, and b) are able to generalize to executing unseen actions if they are provided in the plan. In contrast, models are unable to fully accomplish new multi-step tasks when they are not provided action plan information, even when given new valid workflow names.


Egocentric Planning for Scalable Embodied Task Achievement

arXiv.org Artificial Intelligence

Embodied agents face significant challenges when tasked with performing actions in diverse environments, particularly in generalizing across object types and executing suitable actions to accomplish tasks. Furthermore, agents should exhibit robustness, minimizing the execution of illegal actions. In this work, we present Egocentric Planning, an innovative approach that combines symbolic planning and Object-oriented POMDPs to solve tasks in complex environments, harnessing existing models for visual perception and natural language processing. We evaluated our approach in ALFRED, a simulated environment designed for domestic tasks, and demonstrated its high scalability, achieving an impressive 36.07% unseen success rate in the ALFRED benchmark and winning the ALFRED challenge at CVPR Embodied AI workshop. Our method requires reliable perception and the specification or learning of a symbolic description of the preconditions and effects of the agent's actions, as well as what object types reveal information about others. It is capable of naturally scaling to solve new tasks beyond ALFRED, as long as they can be solved using the available skills. This work offers a solid baseline for studying end-to-end and hybrid methods that aim to generalize to new tasks, including recent approaches relying on LLMs, but often struggle to scale to long sequences of actions or produce robust plans for novel tasks.