Liu, Xiaobo
The Application of ChatGPT in Responding to Questions Related to the Boston Bowel Preparation Scale
Liu, Xiaoqiang, Wang, Yubin, Huang, Zicheng, Xu, Boming, Zeng, Yilin, Chen, Xinqi, Wang, Zilong, Yang, Enning, Lei, Xiaoxuan, Huang, Yisen, Liu, Xiaobo
Background: Colonoscopy, a crucial diagnostic tool in gastroenterology, depends heavily on superior bowel preparation. ChatGPT, a large language model with emergent intelligence which also exhibits potential in medical applications. This study aims to assess the accuracy and consistency of ChatGPT in using the Boston Bowel Preparation Scale (BBPS) for colonoscopy assessment. Methods: We retrospectively collected 233 colonoscopy images from 2020 to 2023. These images were evaluated using the BBPS by 3 senior endoscopists and 3 novice endoscopists. Additionally, ChatGPT also assessed these images, having been divided into three groups and undergone specific Fine-tuning. Consistency was evaluated through two rounds of testing. Results: In the initial round, ChatGPT's accuracy varied between 48.93% and 62.66%, trailing the endoscopists' accuracy of 76.68% to 77.83%. Kappa values for ChatGPT was between 0.52 and 0.53, compared to 0.75 to 0.87 for the endoscopists. Conclusion: While ChatGPT shows promise in bowel preparation scoring, it currently does not match the accuracy and consistency of experienced endoscopists. Future research should focus on in-depth Fine-tuning.
Proprioceptive Learning with Soft Polyhedral Networks
Liu, Xiaobo, Han, Xudong, Hong, Wei, Wan, Fang, Song, Chaoyang
Proprioception is the "sixth sense" that detects limb postures with motor neurons. It requires a natural integration between the musculoskeletal systems and sensory receptors, which is challenging among modern robots that aim for lightweight, adaptive, and sensitive designs at a low cost. Here, we present the Soft Polyhedral Network with an embedded vision for physical interactions, capable of adaptive kinesthesia and viscoelastic proprioception by learning kinetic features. This design enables passive adaptations to omni-directional interactions, visually captured by a miniature high-speed motion tracking system embedded inside for proprioceptive learning. The results show that the soft network can infer real-time 6D forces and torques with accuracies of 0.25/0.24/0.35 N and 0.025/0.034/0.006 Nm in dynamic interactions. We also incorporate viscoelasticity in proprioception during static adaptation by adding a creep and relaxation modifier to refine the predicted results. The proposed soft network combines simplicity in design, omni-adaptation, and proprioceptive sensing with high accuracy, making it a versatile solution for robotics at a low cost with more than 1 million use cycles for tasks such as sensitive and competitive grasping, and touch-based geometry reconstruction. This study offers new insights into vision-based proprioception for soft robots in adaptive grasping, soft manipulation, and human-robot interaction.
Autoencoding a Soft Touch to Learn Grasping from On-land to Underwater
Guo, Ning, Han, Xudong, Liu, Xiaobo, Zhong, Shuqiao, Zhou, Zhiyuan, Lin, Jian, Dai, Jiansheng, Wan, Fang, Song, Chaoyang
Robots play a critical role as the physical agent of human operators in exploring the ocean. However, it remains challenging to grasp objects reliably while fully submerging under a highly pressurized aquatic environment with little visible light, mainly due to the fluidic interference on the tactile mechanics between the finger and object surfaces. This study investigates the transferability of grasping knowledge from on-land to underwater via a vision-based soft robotic finger that learns 6D forces and torques (FT) using a Supervised Variational Autoencoder (SVAE). A high-framerate camera captures the whole-body deformations while a soft robotic finger interacts with physical objects on-land and underwater. Results show that the trained SVAE model learned a series of latent representations of the soft mechanics transferrable from land to water, presenting a superior adaptation to the changing environments against commercial FT sensors. Soft, delicate, and reactive grasping enabled by tactile intelligence enhances the gripper's underwater interaction with improved reliability and robustness at a much-reduced cost, paving the path for learning-based intelligent grasping to support fundamental scientific discoveries in environmental and ocean research.
An enhanced motion planning approach by integrating driving heterogeneity and long-term trajectory prediction for automated driving systems
Dong, Ni, Chen, Shuming, Wu, Yina, Feng, Yiheng, Liu, Xiaobo
The benefits of ADSs can be guaranteed by making the driving experience in complex driving environments more comfortable and safer (Sarker et al., 2019). New perception technologies enable ADSs to detect the surrounding traffic. When surrounding traffic, such as other vehicles, pedestrians, and cyclists, is detected, a motion-planning algorithm can generate a safe path for the ADS (Frazzoli, 2000; Shiller and Gwo, 1991). The generated path is continuously updated using decision and control technologies based on the surrounding environment. One of the greatest challenges for ADSs is the uncertainty of the surrounding dynamic environment (Gonzรกlez et al., 2016). An ADS must adapt to these changing conditions and make decisions that prioritize safety and efficiency.
Jigsaw-based Benchmarking for Learning Robotic Manipulation
Liu, Xiaobo, Wan, Fang, Ge, Sheng, Wang, Haokun, Sun, Haoran, Song, Chaoyang
Benchmarking provides experimental evidence of the scientific baseline to enhance the progression of fundamental research, which is also applicable to robotics. In this paper, we propose a method to benchmark metrics of robotic manipulation, which addresses the spatial-temporal reasoning skills for robot learning with the jigsaw game. In particular, our approach exploits a simple set of jigsaw pieces by designing a structured protocol, which can be highly customizable according to a wide range of task specifications. Researchers can selectively adopt the proposed protocol to benchmark their research outputs, on a comparable scale in the functional, task, and system-level of details. The purpose is to provide a potential look-up table for learning-based robot manipulation, commonly available in other engineering disciplines, to facilitate the adoption of robotics through calculated, empirical, and systematic experimental evidence.
Weighted Ensemble-model and Network Analysis: A method to predict fluid intelligence via naturalistic functional connectivity
Liu, Xiaobo, Yang, Su
Objectives: Functional connectivity triggered by naturalistic stimulus (e.g., movies) and machine learning techniques provide a great insight in exploring the brain functions such as fluid intelligence. However, functional connectivity are considered to be multi-layered, while traditional machine learning based on individual models not only are limited in performance, but also fail to extract multi-dimensional and multi-layered information from brain network. Methods: In this study, inspired by multi-layer brain network structure, we propose a new method namely Weighted Ensemble-model and Network Analysis, which combines the machine learning and graph theory for improved fluid intelligence prediction. Firstly, functional connectivity analysis and graphical theory were jointly employed. The functional connectivity and graphical indices computed using the preprocessed fMRI data were then all fed into auto-encoder parallelly for feature extraction to predict the fluid intelligence. In order to improve the performance, tree regression and ridge regression model were automatically stacked and fused with weighted values. Finally, layers of auto-encoder were visualized to better illustrate the connectome patterns, followed by the evaluation of the performance to justify the mechanism of brain functions. Results: Our proposed methods achieved best performance with 3.85 mean absolute deviation, 0.66 correlation coefficient and 0.42 R-squared coefficient, outperformed other state-of-the-art methods. It is also worth noting that, the optimization of the biological pattern extraction was automated though the auto-encoder algorithm. Conclusion: The proposed method not only outperforming the state-of-the-art reports, but also able to effectively capturing the biological patterns from functional connectivity during naturalistic movies state for potential clinical explorations.