Liu, Wenqiang
Test-Time Code-Switching for Cross-lingual Aspect Sentiment Triplet Extraction
Sheng, Dongming, Han, Kexin, Li, Hao, Zhang, Yan, Huang, Yucheng, Lang, Jun, Liu, Wenqiang
Aspect Sentiment Triplet Extraction (ASTE) is a thriving research area with impressive outcomes being achieved on high-resource languages. However, the application of cross-lingual transfer to the ASTE task has been relatively unexplored, and current code-switching methods still suffer from term boundary detection issues and out-of-dictionary problems. In this study, we introduce a novel Test-Time Code-SWitching (TT-CSW) framework, which bridges the gap between the bilingual training phase and the monolingual test-time prediction. During training, a generative model is developed based on bilingual code-switched training data and can produce bilingual ASTE triplets for bilingual inputs. In the testing stage, we employ an alignment-based code-switching technique for test-time augmentation. Extensive experiments on cross-lingual ASTE datasets validate the effectiveness of our proposed method. We achieve an average improvement of 3.7% in terms of weighted-averaged F1 in four datasets with different languages. Additionally, we set a benchmark using ChatGPT and GPT-4, and demonstrate that even smaller generative models fine-tuned with our proposed TT-CSW framework surpass ChatGPT and GPT-4 by 14.2% and 5.0% respectively.
TEaR: Improving LLM-based Machine Translation with Systematic Self-Refinement
Feng, Zhaopeng, Zhang, Yan, Li, Hao, Wu, Bei, Liao, Jiayu, Liu, Wenqiang, Lang, Jun, Feng, Yang, Wu, Jian, Liu, Zuozhu
Large Language Models (LLMs) have achieved impressive results in Machine Translation (MT). However, careful evaluations by human reveal that the translations produced by LLMs still contain multiple errors. Importantly, feeding back such error information into the LLMs can lead to self-refinement and result in improved translation performance. Motivated by these insights, we introduce a systematic LLM-based self-refinement translation framework, named \textbf{TEaR}, which stands for \textbf{T}ranslate, \textbf{E}stimate, \textbf{a}nd \textbf{R}efine, marking a significant step forward in this direction. Our findings demonstrate that 1) our self-refinement framework successfully assists LLMs in improving their translation quality across a wide range of languages, whether it's from high-resource languages to low-resource ones or whether it's English-centric or centered around other languages; 2) TEaR exhibits superior systematicity and interpretability; 3) different estimation strategies yield varied impacts, directly affecting the effectiveness of the final corrections. Additionally, traditional neural translation models and evaluation models operate separately, often focusing on singular tasks due to their limited capabilities, while general-purpose LLMs possess the capability to undertake both tasks simultaneously. We further conduct cross-model correction experiments to investigate the potential relationship between the translation and evaluation capabilities of general-purpose LLMs. Our code and data are available at https://github.com/fzp0424/self_correct_mt
Distributed Multi-Objective Dynamic Offloading Scheduling for Air-Ground Cooperative MEC
Huang, Yang, Dong, Miaomiao, Mao, Yijie, Liu, Wenqiang, Gao, Zhen
Utilizing unmanned aerial vehicles (UAVs) with edge server to assist terrestrial mobile edge computing (MEC) has attracted tremendous attention. Nevertheless, state-of-the-art schemes based on deterministic optimizations or single-objective reinforcement learning (RL) cannot reduce the backlog of task bits and simultaneously improve energy efficiency in highly dynamic network environments, where the design problem amounts to a sequential decision-making problem. In order to address the aforementioned problems, as well as the curses of dimensionality introduced by the growing number of terrestrial terrestrial users, this paper proposes a distributed multi-objective (MO) dynamic trajectory planning and offloading scheduling scheme, integrated with MORL and the kernel method. The design of n-step return is also applied to average fluctuations in the backlog. Numerical results reveal that the n-step return can benefit the proposed kernel-based approach, achieving significant improvement in the long-term average backlog performance, compared to the conventional 1-step return design. Due to such design and the kernel-based neural network, to which decision-making features can be continuously added, the kernel-based approach can outperform the approach based on fully-connected deep neural network, yielding improvement in energy consumption and the backlog performance, as well as a significant reduction in decision-making and online learning time.
Lifelong Embedding Learning and Transfer for Growing Knowledge Graphs
Cui, Yuanning, Wang, Yuxin, Sun, Zequn, Liu, Wenqiang, Jiang, Yiqiao, Han, Kexin, Hu, Wei
Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.
Knowledge-augmented Few-shot Visual Relation Detection
Yu, Tianyu, Li, Yangning, Chen, Jiaoyan, Li, Yinghui, Zheng, Hai-Tao, Chen, Xi, Liu, Qingbin, Liu, Wenqiang, Huang, Dongxiao, Wu, Bei, Wang, Yexin
Visual Relation Detection (VRD) aims to detect relationships between objects for image understanding. Most existing VRD methods rely on thousands of training samples of each relationship to achieve satisfactory performance. Some recent papers tackle this problem by few-shot learning with elaborately designed pipelines and pre-trained word vectors. However, the performance of existing few-shot VRD models is severely hampered by the poor generalization capability, as they struggle to handle the vast semantic diversity of visual relationships. Nonetheless, humans have the ability to learn new relationships with just few examples based on their knowledge. Inspired by this, we devise a knowledge-augmented, few-shot VRD framework leveraging both textual knowledge and visual relation knowledge to improve the generalization ability of few-shot VRD. The textual knowledge and visual relation knowledge are acquired from a pre-trained language model and an automatically constructed visual relation knowledge graph, respectively. We extensively validate the effectiveness of our framework. Experiments conducted on three benchmarks from the commonly used Visual Genome dataset show that our performance surpasses existing state-of-the-art models with a large improvement.
Learning High-order Structural and Attribute information by Knowledge Graph Attention Networks for Enhancing Knowledge Graph Embedding
Liu, Wenqiang, Cai, Hongyun, Cheng, Xu, Xie, Sifa, Yu, Yipeng, Zhang, Hanyu
The goal of representation learning of knowledge graph is to encode both entities and relations into a low-dimensional embedding spaces. Many recent works have demonstrated the benefits of knowledge graph embedding on knowledge graph completion task, such as relation extraction. However, we observe that: 1) existing method just take direct relations between entities into consideration and fails to express high-order structural relationship between entities; 2) these methods just leverage relation triples of KGs while ignoring a large number of attribute triples that encoding rich semantic information. To overcome these limitations, this paper propose a novel knowledge graph embedding method, named KANE, which is inspired by the recent developments of graph convolutional networks (GCN). KANE can capture both high-order structural and attribute information of KGs in an efficient, explicit and unified manner under the graph convolutional networks framework. Empirical results on three datasets show that KANE significantly outperforms seven state-of-arts methods. Further analysis verify the efficiency of our method and the benefits brought by the attention mechanism.