Liu, Tingkai
Token-Level Uncertainty-Aware Objective for Language Model Post-Training
Liu, Tingkai, Benjamin, Ari S., Zador, Anthony M.
In the current work, we connect token-level uncertainty in causal language modeling to two types of training objectives: 1) masked maximum likelihood (MLE), 2) self-distillation. We show that masked MLE is effective in reducing epistemic uncertainty, and serve as an effective token-level automatic curriculum learning technique. However, masked MLE is prone to overfitting and requires self-distillation regularization to improve or maintain performance on out-of-distribution tasks. We demonstrate significant performance gain via the proposed training objective - combined masked MLE and self-distillation - across multiple architectures (Gemma, LLaMA, Phi) and datasets (Alpaca, ShareGPT, GSM8K), mitigating overfitting while maintaining adaptability during post-training. Our findings suggest that uncertainty-aware training provides an effective mechanism for enhancing language model training.
FullStack Bench: Evaluating LLMs as Full Stack Coders
Bytedance-Seed-Foundation-Code-Team, null, :, null, Cheng, Yao, Chen, Jianfeng, Chen, Jie, Chen, Li, Chen, Liyu, Chen, Wentao, Chen, Zhengyu, Geng, Shijie, Li, Aoyan, Li, Bo, Li, Bowen, Li, Linyi, Liu, Boyi, Liu, Jerry, Liu, Kaibo, Liu, Qi, Liu, Shukai, Liu, Siyao, Liu, Tianyi, Liu, Tingkai, Liu, Yongfei, Long, Rui, Mai, Jing, Ning, Guanghan, Peng, Z. Y., Shen, Kai, Su, Jiahao, Su, Jing, Sun, Tao, Sun, Yifan, Tao, Yunzhe, Wang, Guoyin, Wang, Siwei, Wang, Xuwu, Wang, Yite, Wang, Zihan, Xia, Jinxiang, Xiang, Liang, Xiao, Xia, Xiao, Yongsheng, Xi, Chenguang, Xin, Shulin, Xu, Jingjing, Xu, Shikun, Yang, Hongxia, Yang, Jack, Yang, Yingxiang, Yuan, Jianbo, Zhang, Jun, Zhang, Yufeng, Zhang, Yuyu, Zheng, Shen, Zhu, He, Zhu, Ming
As the capabilities of code large language models (LLMs) continue to expand, their applications across diverse code intelligence domains are rapidly increasing. However, most existing datasets only evaluate limited application domains. To address this gap, we have developed a comprehensive code evaluation dataset FullStack Bench focusing on full-stack programming, which encompasses a wide range of application domains (e.g., basic programming, data analysis, software engineering, mathematics, and machine learning). Besides, to assess multilingual programming capabilities, in FullStack Bench, we design real-world instructions and corresponding unit test cases from 16 widely-used programming languages to reflect real-world usage scenarios rather than simple translations. Moreover, we also release an effective code sandbox execution tool (i.e., SandboxFusion) supporting various programming languages and packages to evaluate the performance of our FullStack Bench efficiently. Comprehensive experimental results on our FullStack Bench demonstrate the necessity and effectiveness of our FullStack Bench and SandboxFusion.
BabelBench: An Omni Benchmark for Code-Driven Analysis of Multimodal and Multistructured Data
Wang, Xuwu, Cui, Qiwen, Tao, Yunzhe, Wang, Yiran, Chai, Ziwei, Han, Xiaotian, Liu, Boyi, Yuan, Jianbo, Su, Jing, Wang, Guoyin, Liu, Tingkai, Chen, Liyu, Liu, Tianyi, Sun, Tao, Zhang, Yufeng, Zheng, Sirui, You, Quanzeng, Yang, Yang, Yang, Hongxia
Large language models (LLMs) have become increasingly pivotal across various domains, especially in handling complex data types. This includes structured data processing, as exemplified by ChartQA and ChatGPT-Ada, and multimodal unstructured data processing as seen in Visual Question Answering (VQA). These areas have attracted significant attention from both industry and academia. Despite this, there remains a lack of unified evaluation methodologies for these diverse data handling scenarios. In response, we introduce BabelBench, an innovative benchmark framework that evaluates the proficiency of LLMs in managing multimodal multistructured data with code execution. BabelBench incorporates a dataset comprising 247 meticulously curated problems that challenge the models with tasks in perception, commonsense reasoning, logical reasoning, and so on. Besides the basic capabilities of multimodal understanding, structured data processing as well as code generation, these tasks demand advanced capabilities in exploration, planning, reasoning and debugging. Our experimental findings on BabelBench indicate that even cutting-edge models like ChatGPT 4 exhibit substantial room for improvement. The insights derived from our comprehensive analysis offer valuable guidance for future research within the community. The benchmark data can be found at https://github.com/FFD8FFE/babelbench.
LoBaSS: Gauging Learnability in Supervised Fine-tuning Data
Zhou, Haotian, Liu, Tingkai, Ma, Qianli, Yuan, Jianbo, Liu, Pengfei, You, Yang, Yang, Hongxia
Supervised Fine-Tuning (SFT) serves as a crucial phase in aligning Large Language Models (LLMs) to specific task prerequisites. The selection of fine-tuning data profoundly influences the model's performance, whose principle is traditionally grounded in data quality and distribution. In this paper, we introduce a new dimension in SFT data selection: learnability. This new dimension is motivated by the intuition that SFT unlocks capabilities acquired by a LLM during the pretraining phase. Given that different pretrained models have disparate capabilities, the SFT data appropriate for one may not suit another. Thus, we introduce the term learnability to define the suitability of data for effective learning by the model. We present the Loss Based SFT Data Selection (LoBaSS) method, utilizing data learnability as the principal criterion for the selection SFT data. This method provides a nuanced approach, allowing the alignment of data selection with inherent model capabilities, ensuring optimal compatibility and learning efficiency. In experimental comparisons involving 7B and 13B models, our LoBaSS method is able to surpass full-data fine-tuning at merely 6% of the total training data. When employing 16.7% of the data, LoBaSS harmonizes the model's capabilities across conversational and mathematical domains, proving its efficacy and adaptability.
Let's reward step by step: Step-Level reward model as the Navigators for Reasoning
Ma, Qianli, Zhou, Haotian, Liu, Tingkai, Yuan, Jianbo, Liu, Pengfei, You, Yang, Yang, Hongxia
Recent years have seen considerable advancements in multi-step reasoning with Large Language Models (LLMs). The previous studies have elucidated the merits of integrating feedback or search mechanisms during model inference to improve the reasoning accuracy. The Process-Supervised Reward Model (PRM), typically furnishes LLMs with step-by-step feedback during the training phase, akin to Proximal Policy Optimization (PPO) or reject sampling. Our objective is to examine the efficacy of PRM in the inference phase to help discern the optimal solution paths for multi-step tasks such as mathematical reasoning and code generation. To this end, we propose a heuristic greedy search algorithm that employs the step-level feedback from PRM to optimize the reasoning pathways explored by LLMs. This tailored PRM demonstrated enhanced results compared to the Chain of Thought (CoT) on mathematical benchmarks like GSM8K and MATH. Additionally, to explore the versatility of our approach, we develop a novel method to automatically generate step-level reward dataset for coding tasks and observed similar improved performance in the code generation tasks. In the exciting evolution of Large Language Models (LLMs) such as GPT (OpenAI, 2023; Brown et al., 2020), LLaMA (Touvron et al., 2023a;b), OPT (Zhang et al., 2022a), Falcon (Penedo et al., 2023), and PaLM (Anil et al., 2023; Chowdhery et al., 2022), a consistent ability to handle tasks from conversation to text generation has been evident. However, when it comes to reasoning, especially multi-step reasoning, current LLMs, even with sophisticated prompting techniques like the Chain of Thought (CoT)(Wei et al., 2023), are still prone to a cascade of errors in their generation processes. As the number of reasoning steps increases, these LLMs face challenges in providing and integrating effective feedback, resulting in one error leading to another. Achieving a refined multi-step reasoning capability for LLMs can unlock their potential across an even broader array of applications, ranging from complex problem-solving to high-level intellectual tasks.
Video-CSR: Complex Video Digest Creation for Visual-Language Models
Liu, Tingkai, Tao, Yunzhe, Liu, Haogeng, Fan, Qihang, Zhou, Ding, Huang, Huaibo, He, Ran, Yang, Hongxia
We present a novel task and human annotated dataset for evaluating the ability for visual-language models to generate captions and summaries for real-world video clips, which we call Video-CSR (Captioning, Summarization and Retrieval). The dataset contains 4.8K YouTube video clips of 20-60 seconds in duration and covers a wide range of topics and interests. Each video clip corresponds to 5 independently annotated captions (1 sentence) and summaries (3-10 sentences). Given any video selected from the dataset and its corresponding ASR information, we evaluate visual-language models on either caption or summary generation that is grounded in both the visual and auditory content of the video. Additionally, models are also evaluated on caption- and summary-based retrieval tasks, where the summary-based retrieval task requires the identification of a target video given excerpts of a corresponding summary. Given the novel nature of the paragraph-length video summarization task, we perform extensive comparative analyses of different existing evaluation metrics and their alignment with human preferences. Finally, we propose a foundation model with competitive generation and retrieval capabilities that serves as a baseline for the Video-CSR task. We aim for Video-CSR to serve as a useful evaluation set in the age of large language models and complex multi-modal tasks.