Goto

Collaborating Authors

 Liu, Songtao


SDDBench: A Benchmark for Synthesizable Drug Design

arXiv.org Artificial Intelligence

A significant challenge in wet lab experiments with current drug design generative models is the trade-off between pharmacological properties and synthesizability. Molecules predicted to have highly desirable properties are often difficult to synthesize, while those that are easily synthesizable tend to exhibit less favorable properties. As a result, evaluating the synthesizability of molecules in general drug design scenarios remains a significant challenge in the field of drug discovery. The commonly used synthetic accessibility (SA) score aims to evaluate the ease of synthesizing generated molecules, but it falls short of guaranteeing that synthetic routes can actually be found. Inspired by recent advances in top-down synthetic route generation, we propose a new, data-driven metric to evaluate molecule synthesizability. Our approach directly assesses the feasibility of synthetic routes for a given molecule through our proposed round-trip score. This novel metric leverages the synergistic duality between retrosynthetic planners and reaction predictors, both of which are trained on extensive reaction datasets. To demonstrate the efficacy of our method, we conduct a comprehensive evaluation of round-trip scores alongside search success rate across a range of representative molecule generative models.


Graph Adversarial Diffusion Convolution

arXiv.org Artificial Intelligence

This paper introduces a min-max optimization formulation for the Graph Signal Denoising (GSD) problem. In this formulation, we first maximize the second term of GSD by introducing perturbations to the graph structure based on Laplacian distance and then minimize the overall loss of the GSD. By solving the min-max optimization problem, we derive a new variant of the Graph Diffusion Convolution (GDC) architecture, called Graph Adversarial Diffusion Convolution (GADC). GADC differs from GDC by incorporating an additional term that enhances robustness against adversarial attacks on the graph structure and noise in node features. Moreover, GADC improves the performance of GDC on heterophilic graphs. Extensive experiments demonstrate the effectiveness of GADC across various datasets. Code is available at https://github.com/SongtaoLiu0823/GADC.


Preference Optimization for Molecule Synthesis with Conditional Residual Energy-based Models

arXiv.org Artificial Intelligence

Molecule synthesis through machine learning is one of the fundamental problems in drug discovery. Current data-driven strategies employ one-step retrosynthesis models and search algorithms to predict synthetic routes in a top-bottom manner. Despite their effective performance, these strategies face limitations in the molecule synthetic route generation due to a greedy selection of the next molecule set without any lookahead. Furthermore, existing strategies cannot control the generation of synthetic routes based on possible criteria such as material costs, yields, and step count. In this work, we propose a general and principled framework via conditional residual energy-based models (EBMs), that focus on the quality of the entire synthetic route based on the specific criteria. By incorporating an additional energy-based function into our probabilistic model, our proposed algorithm can enhance the quality of the most probable synthetic routes (with higher probabilities) generated by various strategies in a plug-and-play fashion. Extensive experiments demonstrate that our framework can consistently boost performance across various strategies and outperforms previous state-of-the-art top-1 accuracy by a margin of 2.5%. Code is available at https://github.com/SongtaoLiu0823/CREBM.


Encoding Hierarchical Schema via Concept Flow for Multifaceted Ideology Detection

arXiv.org Artificial Intelligence

Multifaceted ideology detection (MID) aims to detect the ideological leanings of texts towards multiple facets. Previous studies on ideology detection mainly focus on one generic facet and ignore label semantics and explanatory descriptions of ideologies, which are a kind of instructive information and reveal the specific concepts of ideologies. In this paper, we develop a novel concept semantics-enhanced framework for the MID task. Specifically, we propose a bidirectional iterative concept flow (BICo) method to encode multifaceted ideologies. BICo enables the concepts to flow across levels of the schema tree and enriches concept representations with multi-granularity semantics. Furthermore, we explore concept attentive matching and concept-guided contrastive learning strategies to guide the model to capture ideology features with the learned concept semantics. Extensive experiments on the benchmark dataset show that our approach achieves state-of-the-art performance in MID, including in the cross-topic scenario.


FusionRetro: Molecule Representation Fusion via In-Context Learning for Retrosynthetic Planning

arXiv.org Artificial Intelligence

Retrosynthetic planning aims to devise a complete multi-step synthetic route from starting materials to a target molecule. Current strategies use a decoupled approach of single-step retrosynthesis models and search algorithms, taking only the product as the input to predict the reactants for each planning step and ignoring valuable context information along the synthetic route. In this work, we propose a novel framework that utilizes context information for improved retrosynthetic planning. We view synthetic routes as reaction graphs and propose to incorporate context through three principled steps: encode molecules into embeddings, aggregate information over routes, and readout to predict reactants. Our approach is the first attempt to utilize in-context learning for retrosynthesis prediction in retrosynthetic planning. The entire framework can be efficiently optimized in an end-to-end fashion and produce more practical and accurate predictions. Comprehensive experiments demonstrate that by fusing in the context information over routes, our model significantly improves the performance of retrosynthetic planning over baselines that are not context-aware, especially for long synthetic routes. Code is available at https://github.com/SongtaoLiu0823/FusionRetro.


Workshop on Autonomous Driving at CVPR 2021: Technical Report for Streaming Perception Challenge

arXiv.org Artificial Intelligence

In this report, we introduce our real-time 2D object detection system for the realistic autonomous driving scenario. Our detector is built on a newly designed YOLO model, called YOLOX. On the Argoverse-HD dataset, our system achieves 41.0 streaming AP, which surpassed second place by 7.8/6.1 on detection-only track/fully track, respectively. Moreover, equipped with TensorRT, our model achieves the 30FPS inference speed with a high-resolution input size (e.g., 1440-2304). Code and models will be available at https://github.com/Megvii-BaseDetection/YOLOX