Liu, Shikun
Structural Alignment Improves Graph Test-Time Adaptation
Hsu, Hans Hao-Hsun, Liu, Shikun, Zhao, Han, Li, Pan
Graph-based learning has achieved remarkable success in domains ranging from recommendation to fraud detection and particle physics by effectively capturing underlying interaction patterns. However, it often struggles to generalize when distribution shifts occur, particularly those involving changes in network connectivity or interaction patterns. Existing approaches designed to mitigate such shifts typically require retraining with full access to source data, rendering them infeasible under strict computational or privacy constraints. To address this limitation, we propose a test-time structural alignment (TSA) algorithm for Graph Test-Time Adaptation (GTTA), a novel method that aligns graph structures during inference without revisiting the source domain. Built upon a theoretically grounded treatment of graph data distribution shifts, TSA integrates three key strategies: an uncertainty-aware neighborhood weighting that accommodates structure shifts, an adaptive balancing of self-node and neighborhood-aggregated representations driven by node representations' signal-to-noise ratio, and a decision boundary refinement that corrects remaining label and feature shifts. Extensive experiments on synthetic and real-world datasets demonstrate that TSA can consistently outperform both non-graph TTA methods and state-of-the-art GTTA baselines.
Model Generalization on Text Attribute Graphs: Principles with Large Language Models
Wang, Haoyu, Liu, Shikun, Wei, Rongzhe, Li, Pan
Large language models (LLMs) have recently been introduced to graph learning, aiming to extend their zero-shot generalization success to tasks where labeled graph data is scarce. Among these applications, inference over text-attributed graphs (TAGs) presents unique challenges: existing methods struggle with LLMs' limited context length for processing large node neighborhoods and the misalignment between node embeddings and the LLM token space. To address these issues, we establish two key principles for ensuring generalization and derive the framework LLM-BP accordingly: (1) Unifying the attribute space with task-adaptive embeddings, where we leverage LLM-based encoders and task-aware prompting to enhance generalization of the text attribute embeddings; (2) Developing a generalizable graph information aggregation mechanism, for which we adopt belief propagation with LLM-estimated parameters that adapt across graphs. Evaluations on 11 real-world TAG benchmarks demonstrate that LLM-BP significantly outperforms existing approaches, achieving 8.10% improvement with task-conditional embeddings and an additional 1.71% gain from adaptive aggregation.
MarDini: Masked Autoregressive Diffusion for Video Generation at Scale
Liu, Haozhe, Liu, Shikun, Zhou, Zijian, Xu, Mengmeng, Xie, Yanping, Han, Xiao, Pérez, Juan C., Liu, Ding, Kahatapitiya, Kumara, Jia, Menglin, Wu, Jui-Chieh, He, Sen, Xiang, Tao, Schmidhuber, Jürgen, Pérez-Rúa, Juan-Manuel
We introduce MarDini, a new family of video diffusion models that integrate the advantages of masked auto-regression (MAR) into a unified diffusion model (DM) framework. Here, MAR handles temporal planning, while DM focuses on spatial generation in an asymmetric network design: i) a MAR-based planning model containing most of the parameters generates planning signals for each masked frame using low-resolution input; ii) a lightweight generation model uses these signals to produce high-resolution frames via diffusion de-noising. MarDini's MAR enables video generation conditioned on any number of masked frames at any frame positions: a single model can handle video interpolation (e.g., masking middle frames), image-to-video generation (e.g., masking from the second frame onward), and video expansion (e.g., masking half the frames). The efficient design allocates most of the computational resources to the low-resolution planning model, making computationally expensive but important spatio-temporal attention feasible at scale. MarDini sets a new state-of-the-art for video interpolation; meanwhile, within few inference steps, it efficiently generates videos on par with those of much more expensive advanced image-to-video models.
Pairwise Alignment Improves Graph Domain Adaptation
Liu, Shikun, Zou, Deyu, Zhao, Han, Li, Pan
Graph-based methods, pivotal for label inference over interconnected objects in many real-world applications, often encounter generalization challenges, if the graph used for model training differs significantly from the graph used for testing. This work delves into Graph Domain Adaptation (GDA) to address the unique complexities of distribution shifts over graph data, where interconnected data points experience shifts in features, labels, and in particular, connecting patterns. We propose a novel, theoretically principled method, Pairwise Alignment (Pair-Align) to counter graph structure shift by mitigating conditional structure shift (CSS) and label shift (LS). Pair-Align uses edge weights to recalibrate the influence among neighboring nodes to handle CSS and adjusts the classification loss with label weights to handle LS. Our method demonstrates superior performance in real-world applications, including node classification with region shift in social networks, and the pileup mitigation task in particle colliding experiments. For the first application, we also curate the largest dataset by far for GDA studies. Our method shows strong performance in synthetic and other existing benchmark datasets.
GDL-DS: A Benchmark for Geometric Deep Learning under Distribution Shifts
Zou, Deyu, Liu, Shikun, Miao, Siqi, Fung, Victor, Chang, Shiyu, Li, Pan
Geometric deep learning (GDL) has gained significant attention in various scientific fields, chiefly for its proficiency in modeling data with intricate geometric structures. Yet, very few works have delved into its capability of tackling the distribution shift problem, a prevalent challenge in many relevant applications. To bridge this gap, we propose GDL-DS, a comprehensive benchmark designed for evaluating the performance of GDL models in scenarios with distribution shifts. Our evaluation datasets cover diverse scientific domains from particle physics and materials science to biochemistry, and encapsulate a broad spectrum of distribution shifts including conditional, covariate, and concept shifts. Furthermore, we study three levels of information access from the out-of-distribution (OOD) testing data, including no OOD information, only OOD features without labels, and OOD features with a few labels. Overall, our benchmark results in 30 different experiment settings, and evaluates 3 GDL backbones and 11 learning algorithms in each setting. A thorough analysis of the evaluation results is provided, poised to illuminate insights for DGL researchers and domain practitioners who are to use DGL in their applications.
Structural Re-weighting Improves Graph Domain Adaptation
Liu, Shikun, Li, Tianchun, Feng, Yongbin, Tran, Nhan, Zhao, Han, Qiang, Qiu, Li, Pan
In many real-world applications, graph-structured data used for training and testing have differences in distribution, such as in high energy physics (HEP) where simulation data used for training may not match real experiments. Graph domain adaptation (GDA) is a method used to address these differences. However, current GDA primarily works by aligning the distributions of node representations output by a single graph neural network encoder shared across the training and testing domains, which may often yield sub-optimal solutions. This work examines different impacts of distribution shifts caused by either graph structure or node attributes and identifies a new type of shift, named conditional structure shift (CSS), which current GDA approaches are provably sub-optimal to deal with. A novel approach, called structural reweighting (StruRW), is proposed to address this issue and is tested on synthetic graphs, four benchmark datasets, and a new application in HEP. StruRW has shown significant performance improvement over the baselines in the settings with large graph structure shifts, and reasonable performance improvement when node attribute shift dominates.
Prismer: A Vision-Language Model with An Ensemble of Experts
Liu, Shikun, Fan, Linxi, Johns, Edward, Yu, Zhiding, Xiao, Chaowei, Anandkumar, Anima
Recent vision-language models have shown impressive multi-modal generation capabilities. However, typically they require training huge models on massive datasets. As a more scalable alternative, we introduce Prismer, a data- and parameter-efficient vision-language model that leverages an ensemble of domain experts. Prismer only requires training of a small number of components, with the majority of network weights inherited from readily-available, pre-trained domain experts, and kept frozen during training. By leveraging experts from a wide range of domains, we show that Prismer can efficiently pool this expert knowledge and adapt it to various vision-language reasoning tasks. In our experiments, we show that Prismer achieves fine-tuned and few-shot learning performance which is competitive with current state-of-the-art models, whilst requiring up to two orders of magnitude less training data. Code is available at https://github.com/NVlabs/prismer.
Auto-Lambda: Disentangling Dynamic Task Relationships
Liu, Shikun, James, Stephen, Davison, Andrew J., Johns, Edward
Understanding the structure of multiple related tasks allows for multi-task learning to improve the generalisation ability of one or all of them. However, it usually requires training each pairwise combination of tasks together in order to capture task relationships, at an extremely high computational cost. In this work, we learn task relationships via an automated weighting framework, named Auto-Lambda. Unlike previous methods where task relationships are assumed to be fixed, Auto-Lambda is a gradient-based meta learning framework which explores continuous, dynamic task relationships via task-specific weightings, and can optimise any choice of combination of tasks through the formulation of a meta-loss; where the validation loss automatically influences task weightings throughout training. We apply the proposed framework to both multi-task and auxiliary learning problems in computer vision and robotics, and show that Auto-Lambda achieves state-of-the-art performance, even when compared to optimisation strategies designed specifically for each problem and data domain. Finally, we observe that Auto-Lambda can discover interesting learning behaviors, leading to new insights in multi-task learning. Code is available at https://github.com/lorenmt/auto-lambda.
Shape Adaptor: A Learnable Resizing Module
Liu, Shikun, Lin, Zhe, Wang, Yilin, Zhang, Jianming, Perazzi, Federico, Johns, Edward
Deep neural networks have become popular for many machine learning applications, since they provide simple strategies for end-to-end learning of complex representations. However, success can be highly sensitive to network architectures, which places a great demand on manual engineering of architectures and hyper-parameter tuning. A typical human-designed convolutional neural architecture is composed of two types of computational modules: i) a normal layer, such as a stride-1 convolution or an identity mapping, which maintains the spatial dimension of incoming feature maps; ii) a resizing layer, such as max/average pooling, bilinear sampling, or stride-2 convolution, which reshapes the incoming feature map into a different spatial dimension. We hereby define the shape of a neural network as the composition of the feature dimensions in all network layers, and the architecture as the overall structure formed by stacking multiple normal and resizing layers.
Self-Supervised Generalisation with Meta Auxiliary Learning
Liu, Shikun, Davison, Andrew J., Johns, Edward
Learning with auxiliary tasks has been shown to improve the generalisation of a primary task. However, this comes at the cost of manually-labelling additional tasks which may, or may not, be useful for the primary task. We propose a new method which automatically learns labels for an auxiliary task, such that any supervised learning task can be improved without requiring access to additional data. The approach is to train two neural networks: a label-generation network to predict the auxiliary labels, and a multi-task network to train the primary task alongside the auxiliary task. The loss for the label-generation network incorporates the multi-task network's performance, and so this interaction between the two networks can be seen as a form of meta learning. We show that our proposed method, Meta AuXiliary Learning (MAXL), outperforms single-task learning on 7 image datasets by a significant margin, without requiring additional auxiliary labels. We also show that MAXL outperforms several other baselines for generating auxiliary labels, and is even competitive when compared with human-defined auxiliary labels. The self-supervised nature of our method leads to a promising new direction towards automated generalisation. The source code is available at \url{https://github.com/lorenmt/maxl}.