Liu, Quan
Prism: Mining Task-aware Domains in Non-i.i.d. IMU Data for Flexible User Perception
Li, Yunzhe, Hu, Facheng, Zhu, Hongzi, Liu, Quan, Zhao, Xiaoke, Shen, Jiangang, Chang, Shan, Guo, Minyi
A wide range of user perception applications leverage inertial measurement unit (IMU) data for online prediction. However, restricted by the non-i.i.d. nature of IMU data collected from mobile devices, most systems work well only in a controlled setting (e.g., for a specific user in particular postures), limiting application scenarios. To achieve uncontrolled online prediction on mobile devices, referred to as the flexible user perception (FUP) problem, is attractive but hard. In this paper, we propose a novel scheme, called Prism, which can obtain high FUP accuracy on mobile devices. The core of Prism is to discover task-aware domains embedded in IMU dataset, and to train a domain-aware model on each identified domain. To this end, we design an expectation-maximization (EM) algorithm to estimate latent domains with respect to the specific downstream perception task. Finally, the best-fit model can be automatically selected for use by comparing the test sample and all identified domains in the feature space. We implement Prism on various mobile devices and conduct extensive experiments. Results demonstrate that Prism can achieve the best FUP performance with a low latency.
How Good Are We? Evaluating Cell AI Foundation Models in Kidney Pathology with Human-in-the-Loop Enrichment
Guo, Junlin, Lu, Siqi, Cui, Can, Deng, Ruining, Yao, Tianyuan, Tao, Zhewen, Lin, Yizhe, Lionts, Marilyn, Liu, Quan, Xiong, Juming, Wang, Yu, Zhao, Shilin, Chang, Catie, Wilkes, Mitchell, Yin, Mengmeng, Yang, Haichun, Huo, Yuankai
Training AI foundation models has emerged as a promising large-scale learning approach for addressing real-world healthcare challenges, including digital pathology. While many of these models have been developed for tasks like disease diagnosis and tissue quantification using extensive and diverse training datasets, their readiness for deployment on some arguably simplest tasks, such as nuclei segmentation within a single organ (e.g., the kidney), remains uncertain. This paper seeks to answer this key question, "How good are we?", by thoroughly evaluating the performance of recent cell foundation models on a curated multi-center, multi-disease, and multi-species external testing dataset. Additionally, we tackle a more challenging question, "How can we improve?", by developing and assessing human-in-the-loop data enrichment strategies aimed at enhancing model performance while minimizing the reliance on pixel-level human annotation. To address the first question, we curated a multicenter, multidisease, and multispecies dataset consisting of 2,542 kidney whole slide images (WSIs). Three state-of-the-art (SOTA) cell foundation models-Cellpose, StarDist, and CellViT-were selected for evaluation. To tackle the second question, we explored data enrichment algorithms by distilling predictions from the different foundation models with a human-in-the-loop framework, aiming to further enhance foundation model performance with minimal human efforts. Our experimental results showed that all three foundation models improved over their baselines with model fine-tuning with enriched data. Interestingly, the baseline model with the highest F1 score does not yield the best segmentation outcomes after fine-tuning. This study establishes a benchmark for the development and deployment of cell vision foundation models tailored for real-world data applications.
LLM Unlearning via Loss Adjustment with Only Forget Data
Wang, Yaxuan, Wei, Jiaheng, Liu, Chris Yuhao, Pang, Jinlong, Liu, Quan, Shah, Ankit Parag, Bao, Yujia, Liu, Yang, Wei, Wei
Unlearning in Large Language Models (LLMs) is essential for ensuring ethical and responsible AI use, especially in addressing privacy leak, bias, safety, and evolving regulations. Existing approaches to LLM unlearning often rely on retain data or a reference LLM, yet they struggle to adequately balance unlearning performance with overall model utility. This challenge arises because leveraging explicit retain data or implicit knowledge of retain data from a reference LLM to fine-tune the model tends to blur the boundaries between the forgotten and retain data, as different queries often elicit similar responses. In this work, we propose eliminating the need to retain data or the reference LLM for response calibration in LLM unlearning. Recognizing that directly applying gradient ascent on the forget data often leads to optimization instability and poor performance, our method guides the LLM on what not to respond to, and importantly, how to respond, based on the forget data. Hence, we introduce Forget data only Loss AjustmenT (FLAT), a "flat" loss adjustment approach which addresses these issues by maximizing f-divergence between the available template answer and the forget answer only w.r.t. the forget data. The variational form of the defined f-divergence theoretically provides a way of loss adjustment by assigning different importance weights for the learning w.r.t. template responses and the forgetting of responses subject to unlearning. Empirical results demonstrate that our approach not only achieves superior unlearning performance compared to existing methods but also minimizes the impact on the model's retained capabilities, ensuring high utility across diverse tasks, including copyrighted content unlearning on Harry Potter dataset and MUSE Benchmark, and entity unlearning on the TOFU dataset.
Speak Out of Turn: Safety Vulnerability of Large Language Models in Multi-turn Dialogue
Zhou, Zhenhong, Xiang, Jiuyang, Chen, Haopeng, Liu, Quan, Li, Zherui, Su, Sen
Large Language Models (LLMs) have been demonstrated to generate illegal or unethical responses, particularly when subjected to "jailbreak." Research on jailbreak has highlighted the safety issues of LLMs. However, prior studies have predominantly focused on single-turn dialogue, ignoring the potential complexities and risks presented by multi-turn dialogue, a crucial mode through which humans derive information from LLMs. In this paper, we argue that humans could exploit multi-turn dialogue to induce LLMs into generating harmful information. LLMs may not intend to reject cautionary or borderline unsafe queries, even if each turn is closely served for one malicious purpose in a multi-turn dialogue. Therefore, by decomposing an unsafe query into several sub-queries for multi-turn dialogue, we induced LLMs to answer harmful sub-questions incrementally, culminating in an overall harmful response. Our experiments, conducted across a wide range of LLMs, indicate current inadequacies in the safety mechanisms of LLMs in multi-turn dialogue. Our findings expose vulnerabilities of LLMs in complex scenarios involving multi-turn dialogue, presenting new challenges for the safety of LLMs.
MADNet: Maximizing Addressee Deduction Expectation for Multi-Party Conversation Generation
Gu, Jia-Chen, Tan, Chao-Hong, Chu, Caiyuan, Ling, Zhen-Hua, Tao, Chongyang, Liu, Quan, Liu, Cong
Modeling multi-party conversations (MPCs) with graph neural networks has been proven effective at capturing complicated and graphical information flows. However, existing methods rely heavily on the necessary addressee labels and can only be applied to an ideal setting where each utterance must be tagged with an addressee label. To study the scarcity of addressee labels which is a common issue in MPCs, we propose MADNet that maximizes addressee deduction expectation in heterogeneous graph neural networks for MPC generation. Given an MPC with a few addressee labels missing, existing methods fail to build a consecutively connected conversation graph, but only a few separate conversation fragments instead. To ensure message passing between these conversation fragments, four additional types of latent edges are designed to complete a fully-connected graph. Besides, to optimize the edge-type-dependent message passing for those utterances without addressee labels, an Expectation-Maximization-based method that iteratively generates silver addressee labels (E step), and optimizes the quality of generated responses (M step), is designed. Experimental results on two Ubuntu IRC channel benchmarks show that MADNet outperforms various baseline models on the task of MPC generation, especially under the more common and challenging setting where part of addressee labels are missing.
Untying the Reversal Curse via Bidirectional Language Model Editing
Ma, Jun-Yu, Gu, Jia-Chen, Ling, Zhen-Hua, Liu, Quan, Liu, Cong
Recent studies have demonstrated that large language models (LLMs) store massive factual knowledge within their parameters. But existing LLMs are prone to hallucinate unintended text due to false or outdated knowledge. Since retraining LLMs is resource intensive, there has been a growing interest in the concept of model editing. Despite the emergence of benchmarks and approaches, these unidirectional editing and evaluation have failed to explore the reversal curse. Intuitively, if "The capital of France is" is edited to be a counterfact "London" within a model, then it should be able to naturally reason and recall the reverse fact, i.e., "London is the capital of" followed by "France" instead of "England". In this paper, we study bidirectional language model editing, aiming to provide rigorous model editing evaluation to assess if edited LLMs can recall the editing knowledge bidirectionally. A new evaluation metric of reversibility is introduced, and a benchmark dubbed as Bidirectional Assessment for Knowledge Editing (BAKE) is constructed to evaluate the reversibility of edited models in recalling knowledge in the reverse direction of editing. We surprisingly observe that while current editing methods and LLMs can effectively recall editing facts in the direction of editing, they suffer serious deficiencies when evaluated in the reverse direction. To mitigate the reversal curse, a method named Bidirectionally Inversible Relationship moDeling (BIRD) is proposed. A set of editing objectives that incorporate bidirectional relationships between subject and object into the updated model weights are designed. Experiments show that BIRD improves the performance of four representative LLMs of different sizes via question answering and judgement.
All-in-SAM: from Weak Annotation to Pixel-wise Nuclei Segmentation with Prompt-based Finetuning
Cui, Can, Deng, Ruining, Liu, Quan, Yao, Tianyuan, Bao, Shunxing, Remedios, Lucas W., Tang, Yucheng, Huo, Yuankai
The Segment Anything Model (SAM) is a recently proposed prompt-based segmentation model in a generic zero-shot segmentation approach. With the zero-shot segmentation capacity, SAM achieved impressive flexibility and precision on various segmentation tasks. However, the current pipeline requires manual prompts during the inference stage, which is still resource intensive for biomedical image segmentation. In this paper, instead of using prompts during the inference stage, we introduce a pipeline that utilizes the SAM, called all-in-SAM, through the entire AI development workflow (from annotation generation to model finetuning) without requiring manual prompts during the inference stage. Specifically, SAM is first employed to generate pixel-level annotations from weak prompts (e.g., points, bounding box). Then, the pixel-level annotations are used to finetune the SAM segmentation model rather than training from scratch. Our experimental results reveal two key findings: 1) the proposed pipeline surpasses the state-of-the-art (SOTA) methods in a nuclei segmentation task on the public Monuseg dataset, and 2) the utilization of weak and few annotations for SAM finetuning achieves competitive performance compared to using strong pixel-wise annotated data.
GIFT: Graph-Induced Fine-Tuning for Multi-Party Conversation Understanding
Gu, Jia-Chen, Ling, Zhen-Hua, Liu, Quan, Liu, Cong, Hu, Guoping
Addressing the issues of who saying what to whom in multi-party conversations (MPCs) has recently attracted a lot of research attention. However, existing methods on MPC understanding typically embed interlocutors and utterances into sequential information flows, or utilize only the superficial of inherent graph structures in MPCs. To this end, we present a plug-and-play and lightweight method named graph-induced fine-tuning (GIFT) which can adapt various Transformer-based pre-trained language models (PLMs) for universal MPC understanding. In detail, the full and equivalent connections among utterances in regular Transformer ignore the sparse but distinctive dependency of an utterance on another in MPCs. To distinguish different relationships between utterances, four types of edges are designed to integrate graph-induced signals into attention mechanisms to refine PLMs originally designed for processing sequential texts. We evaluate GIFT by implementing it into three PLMs, and test the performance on three downstream tasks including addressee recognition, speaker identification and response selection. Experimental results show that GIFT can significantly improve the performance of three PLMs on three downstream tasks and two benchmarks with only 4 additional parameters per encoding layer, achieving new state-of-the-art performance on MPC understanding.
Scaling Up 3D Kernels with Bayesian Frequency Re-parameterization for Medical Image Segmentation
Lee, Ho Hin, Liu, Quan, Bao, Shunxing, Yang, Qi, Yu, Xin, Cai, Leon Y., Li, Thomas, Huo, Yuankai, Koutsoukos, Xenofon, Landman, Bennett A.
With the inspiration of vision transformers, the concept of depth-wise convolution revisits to provide a large Effective Receptive Field (ERF) using Large Kernel (LK) sizes for medical image segmentation. However, the segmentation performance might be saturated and even degraded as the kernel sizes scaled up (e.g., $21\times 21\times 21$) in a Convolutional Neural Network (CNN). We hypothesize that convolution with LK sizes is limited to maintain an optimal convergence for locality learning. While Structural Re-parameterization (SR) enhances the local convergence with small kernels in parallel, optimal small kernel branches may hinder the computational efficiency for training. In this work, we propose RepUX-Net, a pure CNN architecture with a simple large kernel block design, which competes favorably with current network state-of-the-art (SOTA) (e.g., 3D UX-Net, SwinUNETR) using 6 challenging public datasets. We derive an equivalency between kernel re-parameterization and the branch-wise variation in kernel convergence. Inspired by the spatial frequency in the human visual system, we extend to vary the kernel convergence into element-wise setting and model the spatial frequency as a Bayesian prior to re-parameterize convolutional weights during training. Specifically, a reciprocal function is leveraged to estimate a frequency-weighted value, which rescales the corresponding kernel element for stochastic gradient descent. From the experimental results, RepUX-Net consistently outperforms 3D SOTA benchmarks with internal validation (FLARE: 0.929 to 0.944), external validation (MSD: 0.901 to 0.932, KiTS: 0.815 to 0.847, LiTS: 0.933 to 0.949, TCIA: 0.736 to 0.779) and transfer learning (AMOS: 0.880 to 0.911) scenarios in Dice Score.
SHINE: Syntax-augmented Hierarchical Interactive Encoder for Zero-shot Cross-lingual Information Extraction
Ma, Jun-Yu, Gu, Jia-Chen, Ling, Zhen-Hua, Liu, Quan, Liu, Cong, Hu, Guoping
Zero-shot cross-lingual information extraction(IE) aims at constructing an IE model for some low-resource target languages, given annotations exclusively in some rich-resource languages. Recent studies based on language-universal features have shown their effectiveness and are attracting increasing attention. However, prior work has neither explored the potential of establishing interactions between language-universal features and contextual representations nor incorporated features that can effectively model constituent span attributes and relationships between multiple spans. In this study, a syntax-augmented hierarchical interactive encoder (SHINE) is proposed to transfer cross-lingual IE knowledge. The proposed encoder is capable of interactively capturing complementary information between features and contextual information, to derive language-agnostic representations for various IE tasks. Concretely, a multi-level interaction network is designed to hierarchically interact the complementary information to strengthen domain adaptability. Besides, in addition to the well-studied syntax features of part-of-speech and dependency relation, a new syntax feature of constituency structure is introduced to model the constituent span information which is crucial for IE. Experiments across seven languages on three IE tasks and four benchmarks verify the effectiveness and generalization ability of the proposed method.