Goto

Collaborating Authors

 Liu, Qianying


HAPI: A Model for Learning Robot Facial Expressions from Human Preferences

arXiv.org Artificial Intelligence

Automatic robotic facial expression generation is crucial for human-robot interaction, as handcrafted methods based on fixed joint configurations often yield rigid and unnatural behaviors. Although recent automated techniques reduce the need for manual tuning, they tend to fall short by not adequately bridging the gap between human preferences and model predictions-resulting in a deficiency of nuanced and realistic expressions due to limited degrees of freedom and insufficient perceptual integration. In this work, we propose a novel learning-to-rank framework that leverages human feedback to address this discrepancy and enhanced the expressiveness of robotic faces. Specifically, we conduct pairwise comparison annotations to collect human preference data and develop the Human Affective Pairwise Impressions (HAPI) model, a Siamese RankNet-based approach that refines expression evaluation. Results obtained via Bayesian Optimization and online expression survey on a 35-DOF android platform demonstrate that our approach produces significantly more realistic and socially resonant expressions of Anger, Happiness, and Surprise than those generated by baseline and expert-designed methods. This confirms that our framework effectively bridges the gap between human preferences and model predictions while robustly aligning robotic expression generation with human affective responses.


Assessing Large Language Models in Agentic Multilingual National Bias

arXiv.org Artificial Intelligence

Large Language Models have garnered significant attention for their capabilities in multilingual natural language processing, while studies on risks associated with cross biases are limited to immediate context preferences. Cross-language disparities in reasoning-based recommendations remain largely unexplored, with a lack of even descriptive analysis. This study is the first to address this gap. We test LLM's applicability and capability in providing personalized advice across three key scenarios: university applications, travel, and relocation. We investigate multilingual bias in state-of-the-art LLMs by analyzing their responses to decision-making tasks across multiple languages. We quantify bias in model-generated scores and assess the impact of demographic factors and reasoning strategies (e.g., Chain-of-Thought prompting) on bias patterns. Our findings reveal that local language bias is prevalent across different tasks, with GPT-4 and Sonnet reducing bias for English-speaking countries compared to GPT-3.5 but failing to achieve robust multilingual alignment, highlighting broader implications for multilingual AI agents and applications such as education.


Cross-lingual Embedding Clustering for Hierarchical Softmax in Low-Resource Multilingual Speech Recognition

arXiv.org Artificial Intelligence

We present a novel approach centered on the decoding stage of Automatic Speech Recognition (ASR) that enhances multilingual performance, especially for low-resource languages. It utilizes a cross-lingual embedding clustering method to construct a hierarchical Softmax (H-Softmax) decoder, which enables similar tokens across different languages to share similar decoder representations. It addresses the limitations of the previous Huffman-based H-Softmax method, which relied on shallow features in token similarity assessments. Through experiments on a downsampled dataset of 15 languages, we demonstrate the effectiveness of our approach in improving low-resource multilingual ASR accuracy.


Credit Risk Identification in Supply Chains Using Generative Adversarial Networks

arXiv.org Artificial Intelligence

Credit risk management within supply chains has emerged as a critical research area due to its significant implications for operational stability and financial sustainability. The intricate interdependencies among supply chain participants mean that credit risks can propagate across networks, with impacts varying by industry. This study explores the application of Generative Adversarial Networks (GANs) to enhance credit risk identification in supply chains. GANs enable the generation of synthetic credit risk scenarios, addressing challenges related to data scarcity and imbalanced datasets. By leveraging GAN-generated data, the model improves predictive accuracy while effectively capturing dynamic and temporal dependencies in supply chain data. The research focuses on three representative industries-manufacturing (steel), distribution (pharmaceuticals), and services (e-commerce) to assess industry-specific credit risk contagion. Experimental results demonstrate that the GAN-based model outperforms traditional methods, including logistic regression, decision trees, and neural networks, achieving superior accuracy, recall, and F1 scores. The findings underscore the potential of GANs in proactive risk management, offering robust tools for mitigating financial disruptions in supply chains. Future research could expand the model by incorporating external market factors and supplier relationships to further enhance predictive capabilities. Keywords- Generative Adversarial Networks (GANs); Supply Chain Risk; Credit Risk Identification; Machine Learning; Data Augmentation


Developing Cryptocurrency Trading Strategy Based on Autoencoder-CNN-GANs Algorithms

arXiv.org Artificial Intelligence

This paper leverages machine learning algorithms to forecast and analyze financial time series. The process begins with a denoising autoencoder to filter out random noise fluctuations from the main contract price data. Then, one-dimensional convolution reduces the dimensionality of the filtered data and extracts key information. The filtered and dimensionality-reduced price data is fed into a GANs network, and its output serve as input of a fully connected network. Through cross-validation, a model is trained to capture features that precede large price fluctuations. The model predicts the likelihood and direction of significant price changes in real-time price sequences, placing trades at moments of high prediction accuracy. Empirical results demonstrate that using autoencoders and convolution to filter and denoise financial data, combined with GANs, achieves a certain level of predictive performance, validating the capabilities of machine learning algorithms to discover underlying patterns in financial sequences. Keywords - CNN;GANs; Cryptocurrency; Prediction.


Beyond English-Centric LLMs: What Language Do Multilingual Language Models Think in?

arXiv.org Artificial Intelligence

In this study, we investigate whether non-English-centric LLMs, despite their strong performance, `think' in their respective dominant language: more precisely, `think' refers to how the representations of intermediate layers, when un-embedded into the vocabulary space, exhibit higher probabilities for certain dominant languages during generation. We term such languages as internal $\textbf{latent languages}$. We examine the latent language of three typical categories of models for Japanese processing: Llama2, an English-centric model; Swallow, an English-centric model with continued pre-training in Japanese; and LLM-jp, a model pre-trained on balanced English and Japanese corpora. Our empirical findings reveal that, unlike Llama2 which relies exclusively on English as the internal latent language, Japanese-specific Swallow and LLM-jp employ both Japanese and English, exhibiting dual internal latent languages. For any given target language, the model preferentially activates the latent language most closely related to it. In addition, we explore how intermediate layers respond to questions involving cultural conflicts between latent internal and target output languages. We further explore how the language identity shifts across layers while keeping consistent semantic meaning reflected in the intermediate layer representations. This study deepens the understanding of non-English-centric large language models, highlighting the intricate dynamics of language representation within their intermediate layers.


GLFNET: Global-Local (frequency) Filter Networks for efficient medical image segmentation

arXiv.org Artificial Intelligence

We propose a novel transformer-style architecture called Global-Local Filter Network (GLFNet) for medical image segmentation and demonstrate its state-of-the-art performance. We replace the self-attention mechanism with a combination of global-local filter blocks to optimize model efficiency. The global filters extract features from the whole feature map whereas the local filters are being adaptively created as 4x4 patches of the same feature map and add restricted scale information. In particular, the feature extraction takes place in the frequency domain rather than the commonly used spatial (image) domain to facilitate faster computations. The fusion of information from both spatial and frequency spaces creates an efficient model with regards to complexity, required data and performance. We test GLFNet on three benchmark datasets achieving state-of-the-art performance on all of them while being almost twice as efficient in terms of GFLOP operations.


GPT-RE: In-context Learning for Relation Extraction using Large Language Models

arXiv.org Artificial Intelligence

In spite of the potential for ground-breaking achievements offered by large language models (LLMs) (e.g., GPT-3), they still lag significantly behind fully-supervised baselines (e.g., fine-tuned BERT) in relation extraction (RE). This is due to the two major shortcomings of LLMs in RE: (1) low relevance regarding entity and relation in retrieved demonstrations for in-context learning; and (2) the strong inclination to wrongly classify NULL examples into other pre-defined labels. In this paper, we propose GPT-RE to bridge the gap between LLMs and fully-supervised baselines. GPT-RE successfully addresses the aforementioned issues by (1) incorporating task-specific entity representations in demonstration retrieval; and (2) enriching the demonstrations with gold label-induced reasoning logic. We evaluate GPT-RE on four widely-used RE datasets, and observe that GPT-RE achieves improvements over not only existing GPT-3 baselines, but also fully-supervised baselines. Specifically, GPT-RE achieves SOTA performances on the Semeval and SciERC datasets, and competitive performances on the TACRED and ACE05 datasets.


Multi-Scale Cross Contrastive Learning for Semi-Supervised Medical Image Segmentation

arXiv.org Artificial Intelligence

Semi-supervised learning has demonstrated great potential in medical image segmentation by utilizing knowledge from unlabeled data. However, most existing approaches do not explicitly capture high-level semantic relations between distant regions, which limits their performance. In this paper, we focus on representation learning for semi-supervised learning, by developing a novel Multi-Scale Cross Supervised Contrastive Learning (MCSC) framework, to segment structures in medical images. We jointly train CNN and Transformer models, regularising their features to be semantically consistent across different scales. Our approach contrasts multi-scale features based on ground-truth and cross-predicted labels, in order to extract robust feature representations that reflect intra- and inter-slice relationships across the whole dataset. To tackle class imbalance, we take into account the prevalence of each class to guide contrastive learning and ensure that features adequately capture infrequent classes. Extensive experiments on two multi-structure medical segmentation datasets demonstrate the effectiveness of MCSC. It not only outperforms state-of-the-art semi-supervised methods by more than 3.0% in Dice, but also greatly reduces the performance gap with fully supervised methods.


Exploring the Impact of Layer Normalization for Zero-shot Neural Machine Translation

arXiv.org Artificial Intelligence

This paper studies the impact of layer normalization (LayerNorm) on zero-shot translation (ZST). Recent efforts for ZST often utilize the Transformer architecture as the backbone, with LayerNorm at the input of layers (PreNorm) set as the default. However, Xu et al. (2019) has revealed that PreNorm carries the risk of overfitting the training data. Based on this, we hypothesize that PreNorm may overfit supervised directions and thus have low generalizability for ZST. Through experiments on OPUS, IWSLT, and Europarl datasets for 54 ZST directions, we demonstrate that the original Transformer setting of LayerNorm after residual connections (PostNorm) consistently outperforms PreNorm by up to 12.3 BLEU points. We then study the performance disparities by analyzing the differences in off-target rates and structural variations between PreNorm and PostNorm. This study highlights the need for careful consideration of the LayerNorm setting for ZST.