Liu, Ning
Cooperative Hybrid Multi-Agent Pathfinding Based on Shared Exploration Maps
Liu, Ning, Shen, Sen, Kong, Xiangrui, Zhang, Hongtao, Bräunl, Thomas
Multi-Agent Pathfinding is used in areas including multi-robot formations, warehouse logistics, and intelligent vehicles. However, many environments are incomplete or frequently change, making it difficult for standard centralized planning or pure reinforcement learning to maintain both global solution quality and local flexibility. This paper introduces a hybrid framework that integrates D* Lite global search with multi-agent reinforcement learning, using a switching mechanism and a freeze-prevention strategy to handle dynamic conditions and crowded settings. We evaluate the framework in the discrete POGEMA environment and compare it with baseline methods. Experimental outcomes indicate that the proposed framework substantially improves success rate, collision rate, and path efficiency. The model is further tested on the EyeSim platform, where it maintains feasible Pathfinding under frequent changes and large-scale robot deployments.
ChatVLA: Unified Multimodal Understanding and Robot Control with Vision-Language-Action Model
Zhou, Zhongyi, Zhu, Yichen, Zhu, Minjie, Wen, Junjie, Liu, Ning, Xu, Zhiyuan, Meng, Weibin, Cheng, Ran, Peng, Yaxin, Shen, Chaomin, Feng, Feifei
Humans possess a unified cognitive ability to perceive, comprehend, and interact with the physical world. Why can't large language models replicate this holistic understanding? Through a systematic analysis of existing training paradigms in vision-language-action models (VLA), we identify two key challenges: spurious forgetting, where robot training overwrites crucial visual-text alignments, and task interference, where competing control and understanding tasks degrade performance when trained jointly. To overcome these limitations, we propose ChatVLA, a novel framework featuring Phased Alignment Training, which incrementally integrates multimodal data after initial control mastery, and a Mixture-of-Experts architecture to minimize task interference. ChatVLA demonstrates competitive performance on visual question-answering datasets and significantly surpasses state-of-the-art vision-language-action (VLA) methods on multimodal understanding benchmarks. Notably, it achieves a six times higher performance on MMMU and scores 47.2% on MMStar with a more parameter-efficient design than ECoT. Furthermore, ChatVLA demonstrates superior performance on 25 real-world robot manipulation tasks compared to existing VLA methods like OpenVLA. Our findings highlight the potential of our unified framework for achieving both robust multimodal understanding and effective robot control.
DeFiScope: Detecting Various DeFi Price Manipulations with LLM Reasoning
Zhong, Juantao, Wu, Daoyuan, Liu, Ye, Xie, Maoyi, Liu, Yang, Li, Yi, Liu, Ning
DeFi (Decentralized Finance) is one of the most important applications of today's cryptocurrencies and smart contracts. It manages hundreds of billions in Total Value Locked (TVL) on-chain, yet it remains susceptible to common DeFi price manipulation attacks. Despite state-of-the-art (SOTA) systems like DeFiRanger and DeFort, we found that they are less effective to non-standard price models in custom DeFi protocols, which account for 44.2% of the 95 DeFi price manipulation attacks reported over the past three years. In this paper, we introduce the first LLM-based approach, DeFiScope, for detecting DeFi price manipulation attacks in both standard and custom price models. Our insight is that large language models (LLMs) have certain intelligence to abstract price calculation from code and infer the trend of token price changes based on the extracted price models. To further strengthen LLMs in this aspect, we leverage Foundry to synthesize on-chain data and use it to fine-tune a DeFi price-specific LLM. Together with the high-level DeFi operations recovered from low-level transaction data, DeFiScope detects various DeFi price manipulations according to systematically mined patterns. Experimental results show that DeFiScope achieves a high precision of 96% and a recall rate of 80%, significantly outperforming SOTA approaches. Moreover, we evaluate DeFiScope's cost-effectiveness and demonstrate its practicality by helping our industry partner confirm 147 real-world price manipulation attacks, including discovering 81 previously unknown historical incidents.
Personalized Language Model Learning on Text Data Without User Identifiers
Ding, Yucheng, Tan, Yangwenjian, Liu, Xiangyu, Niu, Chaoyue, Meng, Fandong, Zhou, Jie, Liu, Ning, Wu, Fan, Chen, Guihai
In many practical natural language applications, user data are highly sensitive, requiring anonymous uploads of text data from mobile devices to the cloud without user identifiers. However, the absence of user identifiers restricts the ability of cloud-based language models to provide personalized services, which are essential for catering to diverse user needs. The trivial method of replacing an explicit user identifier with a static user embedding as model input still compromises data anonymization. In this work, we propose to let each mobile device maintain a user-specific distribution to dynamically generate user embeddings, thereby breaking the one-to-one mapping between an embedding and a specific user. We further theoretically demonstrate that to prevent the cloud from tracking users via uploaded embeddings, the local distributions of different users should either be derived from a linearly dependent space to avoid identifiability or be close to each other to prevent accurate attribution. Evaluation on both public and industrial datasets using different language models reveals a remarkable improvement in accuracy from incorporating anonymous user embeddings, while preserving real-time inference requirement.
RoboMIND: Benchmark on Multi-embodiment Intelligence Normative Data for Robot Manipulation
Wu, Kun, Hou, Chengkai, Liu, Jiaming, Che, Zhengping, Ju, Xiaozhu, Yang, Zhuqin, Li, Meng, Zhao, Yinuo, Xu, Zhiyuan, Yang, Guang, Zhao, Zhen, Li, Guangyu, Jin, Zhao, Wang, Lecheng, Mao, Jilei, Wang, Xinhua, Fan, Shichao, Liu, Ning, Ren, Pei, Zhang, Qiang, Lyu, Yaoxu, Liu, Mengzhen, He, Jingyang, Luo, Yulin, Gao, Zeyu, Li, Chenxuan, Gu, Chenyang, Fu, Yankai, Wu, Di, Wang, Xingyu, Chen, Sixiang, Wang, Zhenyu, An, Pengju, Qian, Siyuan, Zhang, Shanghang, Tang, Jian
Developing robust and general-purpose robotic manipulation policies is a key goal in the field of robotics. To achieve effective generalization, it is essential to construct comprehensive datasets that encompass a large number of demonstration trajectories and diverse tasks. Unlike vision or language data that can be collected from the Internet, robotic datasets require detailed observations and manipulation actions, necessitating significant investment in hardware-software infrastructure and human labor. While existing works have focused on assembling various individual robot datasets, there remains a lack of a unified data collection standard and insufficient diversity in tasks, scenarios, and robot types. In this paper, we introduce RoboMIND (Multi-embodiment Intelligence Normative Data for Robot manipulation), featuring 55k real-world demonstration trajectories across 279 diverse tasks involving 61 different object classes. RoboMIND is collected through human teleoperation and encompasses comprehensive robotic-related information, including multi-view RGB-D images, proprioceptive robot state information, end effector details, and linguistic task descriptions. To ensure dataset consistency and reliability during policy learning, RoboMIND is built on a unified data collection platform and standardized protocol, covering four distinct robotic embodiments. We provide a thorough quantitative and qualitative analysis of RoboMIND across multiple dimensions, offering detailed insights into the diversity of our datasets. In our experiments, we conduct extensive real-world testing with four state-of-the-art imitation learning methods, demonstrating that training with RoboMIND data results in a high manipulation success rate and strong generalization. Our project is at https://x-humanoid-robomind.github.io/.
Scaling Diffusion Policy in Transformer to 1 Billion Parameters for Robotic Manipulation
Zhu, Minjie, Zhu, Yichen, Li, Jinming, Wen, Junjie, Xu, Zhiyuan, Liu, Ning, Cheng, Ran, Shen, Chaomin, Peng, Yaxin, Feng, Feifei, Tang, Jian
Diffusion Policy is a powerful technique tool for learning end-to-end visuomotor robot control. It is expected that Diffusion Policy possesses scalability, a key attribute for deep neural networks, typically suggesting that increasing model size would lead to enhanced performance. However, our observations indicate that Diffusion Policy in transformer architecture (\DP) struggles to scale effectively; even minor additions of layers can deteriorate training outcomes. To address this issue, we introduce Scalable Diffusion Transformer Policy for visuomotor learning. Our proposed method, namely \textbf{\methodname}, introduces two modules that improve the training dynamic of Diffusion Policy and allow the network to better handle multimodal action distribution. First, we identify that \DP~suffers from large gradient issues, making the optimization of Diffusion Policy unstable. To resolve this issue, we factorize the feature embedding of observation into multiple affine layers, and integrate it into the transformer blocks. Additionally, our utilize non-causal attention which allows the policy network to \enquote{see} future actions during prediction, helping to reduce compounding errors. We demonstrate that our proposed method successfully scales the Diffusion Policy from 10 million to 1 billion parameters. This new model, named \methodname, can effectively scale up the model size with improved performance and generalization. We benchmark \methodname~across 50 different tasks from MetaWorld and find that our largest \methodname~outperforms \DP~with an average improvement of 21.6\%. Across 7 real-world robot tasks, our ScaleDP demonstrates an average improvement of 36.25\% over DP-T on four single-arm tasks and 75\% on three bimanual tasks. We believe our work paves the way for scaling up models for visuomotor learning. The project page is available at scaling-diffusion-policy.github.io.
EDT: An Efficient Diffusion Transformer Framework Inspired by Human-like Sketching
Chen, Xinwang, Liu, Ning, Zhu, Yichen, Feng, Feifei, Tang, Jian
Transformer-based Diffusion Probabilistic Models (DPMs) have shown more potential than CNN-based DPMs, yet their extensive computational requirements hinder widespread practical applications. To reduce the computation budget of transformer-based DPMs, this work proposes the Efficient Diffusion Transformer (EDT) framework. The framework includes a lightweight-design diffusion model architecture, and a training-free Attention Modulation Matrix and its alternation arrangement in EDT inspired by human-like sketching. Additionally, we propose a token relation-enhanced masking training strategy tailored explicitly for EDT to augment its token relation learning capability. Our extensive experiments demonstrate the efficacy of EDT. The EDT framework reduces training and inference costs and surpasses existing transformer-based diffusion models in image synthesis performance, thereby achieving a significant overall enhancement. With lower FID, EDT-S, EDT-B, and EDT-XL attained speed-ups of 3.93x, 2.84x, and 1.92x respectively in the training phase, and 2.29x, 2.29x, and 2.22x respectively in inference, compared to the corresponding sizes of MDTv2. The source code is released here.
Discrete Policy: Learning Disentangled Action Space for Multi-Task Robotic Manipulation
Wu, Kun, Zhu, Yichen, Li, Jinming, Wen, Junjie, Liu, Ning, Xu, Zhiyuan, Qiu, Qinru, Tang, Jian
Learning visuomotor policy for multi-task robotic manipulation has been a long-standing challenge for the robotics community. The difficulty lies in the diversity of action space: typically, a goal can be accomplished in multiple ways, resulting in a multimodal action distribution for a single task. The complexity of action distribution escalates as the number of tasks increases. In this work, we propose \textbf{Discrete Policy}, a robot learning method for training universal agents capable of multi-task manipulation skills. Discrete Policy employs vector quantization to map action sequences into a discrete latent space, facilitating the learning of task-specific codes. These codes are then reconstructed into the action space conditioned on observations and language instruction. We evaluate our method on both simulation and multiple real-world embodiments, including both single-arm and bimanual robot settings. We demonstrate that our proposed Discrete Policy outperforms a well-established Diffusion Policy baseline and many state-of-the-art approaches, including ACT, Octo, and OpenVLA. For example, in a real-world multi-task training setting with five tasks, Discrete Policy achieves an average success rate that is 26\% higher than Diffusion Policy and 15\% higher than OpenVLA. As the number of tasks increases to 12, the performance gap between Discrete Policy and Diffusion Policy widens to 32.5\%, further showcasing the advantages of our approach. Our work empirically demonstrates that learning multi-task policies within the latent space is a vital step toward achieving general-purpose agents.
Disentangled Representation Learning for Parametric Partial Differential Equations
Liu, Ning, Zhang, Lu, Gao, Tian, Yu, Yue
Neural operators (NOs) have demonstrated remarkable success in learning mappings between function spaces, serving as efficient approximators for the forward solutions of complex physical systems governed by partial differential equations (PDEs). However, while effective as black-box solvers, they offer limited insight into the underlying physical mechanism, due to the lack of interpretable representations of the physical parameters that drive the system. To tackle this challenge, we propose a new paradigm for learning disentangled representations from neural operator parameters, thereby effectively solving an inverse problem. Specifically, we introduce DisentangO, a novel hyper-neural operator architecture designed to unveil and disentangle the latent physical factors of variation embedded within the black-box neural operator parameters. At the core of DisentangO is a multi-task neural operator architecture that distills the varying parameters of the governing PDE through a task-wise adaptive layer, coupled with a hierarchical variational autoencoder that disentangles these variations into identifiable latent factors. By learning these disentangled representations, our model not only enhances physical interpretability but also enables more robust generalization across diverse physical systems. Empirical evaluations across supervised, semi-supervised, and unsupervised learning contexts show that DisentangO effectively extracts meaningful and interpretable latent features, bridging the divide between predictive performance and physical understanding in neural operator frameworks.
AlterMOMA: Fusion Redundancy Pruning for Camera-LiDAR Fusion Models with Alternative Modality Masking
Sun, Shiqi, Lu, Yantao, Liu, Ning, Jiang, Bo, Chen, JinChao, Zhang, Ying
Camera-LiDAR fusion models significantly enhance perception performance in autonomous driving. The fusion mechanism leverages the strengths of each modality while minimizing their weaknesses. Moreover, in practice, camera-LiDAR fusion models utilize pre-trained backbones for efficient training. However, we argue that directly loading single-modal pre-trained camera and LiDAR backbones into camera-LiDAR fusion models introduces similar feature redundancy across modalities due to the nature of the fusion mechanism. Unfortunately, existing pruning methods are developed explicitly for single-modal models, and thus, they struggle to effectively identify these specific redundant parameters in camera-LiDAR fusion models. In this paper, to address the issue above on camera-LiDAR fusion models, we propose a novelty pruning framework Alternative Modality Masking Pruning (AlterMOMA), which employs alternative masking on each modality and identifies the redundant parameters. Specifically, when one modality parameters are masked (deactivated), the absence of features from the masked backbone compels the model to reactivate previous redundant features of the other modality backbone. Therefore, these redundant features and relevant redundant parameters can be identified via the reactivation process. The redundant parameters can be pruned by our proposed importance score evaluation function, Alternative Evaluation (AlterEva), which is based on the observation of the loss changes when certain modality parameters are activated and deactivated. Extensive experiments on the nuScene and KITTI datasets encompassing diverse tasks, baseline models, and pruning algorithms showcase that AlterMOMA outperforms existing pruning methods, attaining state-of-the-art performance.