Liu, Mingyan
Providing Differential Privacy for Federated Learning Over Wireless: A Cross-layer Framework
Mao, Jiayu, Yin, Tongxin, Yener, Aylin, Liu, Mingyan
Federated Learning (FL) is a distributed machine learning framework that inherently allows edge devices to maintain their local training data, thus providing some level of privacy. However, FL's model updates still pose a risk of privacy leakage, which must be mitigated. Over-the-air FL (OTA-FL) is an adapted FL design for wireless edge networks that leverages the natural superposition property of the wireless medium. We propose a wireless physical layer (PHY) design for OTA-FL which improves differential privacy (DP) through a decentralized, dynamic power control that utilizes both inherent Gaussian noise in the wireless channel and a cooperative jammer (CJ) for additional artificial noise generation when higher privacy levels are required. Although primarily implemented within the Upcycled-FL framework, where a resource-efficient method with first-order approximations is used at every even iteration to decrease the required information from clients, our power control strategy is applicable to any FL framework, including FedAvg and FedProx as shown in the paper. This adaptation showcases the flexibility and effectiveness of our design across different learning algorithms while maintaining a strong emphasis on privacy. Our design removes the need for client-side artificial noise injection for DP, utilizing a cooperative jammer to enhance privacy without affecting transmission efficiency for higher privacy demands. Privacy analysis is provided using the Moments Accountant method. We perform a convergence analysis for non-convex objectives to tackle heterogeneous data distributions, highlighting the inherent trade-offs between privacy and accuracy. Numerical results show that our approach with various FL algorithms outperforms the state-of-the-art under the same DP conditions on the non-i.i.d. FEMNIST dataset, and highlight the cooperative jammer's effectiveness in ensuring strict privacy.
Federated Learning with Reduced Information Leakage and Computation
Yin, Tongxin, Zhang, Xueru, Khalili, Mohammad Mahdi, Liu, Mingyan
Federated learning (FL) is a distributed learning paradigm that allows multiple decentralized clients to collaboratively learn a common model without sharing local data. Although local data is not exposed directly, privacy concerns nonetheless exist as clients' sensitive information can be inferred from intermediate computations. Moreover, such information leakage accumulates substantially over time as the same data is repeatedly used during the iterative learning process. As a result, it can be particularly difficult to balance the privacy-accuracy trade-off when designing privacy-preserving FL algorithms. In this paper, we introduce Upcycled-FL, a novel federated learning framework with first-order approximation applied at every even iteration. Under this framework, half of the FL updates incur no information leakage and require much less computation. We first conduct the theoretical analysis on the convergence (rate) of Upcycled-FL, and then apply perturbation mechanisms to preserve privacy. Experiments on real-world data show that Upcycled-FL consistently outperforms existing methods over heterogeneous data, and significantly improves privacy-accuracy trade-off while reducing 48% of the training time on average.
Professional Basketball Player Behavior Synthesis via Planning with Diffusion
Chen, Xiusi, Wang, Wei-Yao, Hu, Ziniu, Chou, Curtis, Hoang, Lam, Jin, Kun, Liu, Mingyan, Brantingham, P. Jeffrey, Wang, Wei
Dynamically planning in multi-agent systems has been explored to improve decision-making in various domains. Professional basketball serves as a compelling example of a dynamic spatio-temporal game, encompassing both concealed strategic policies and decision-making. However, processing the diverse on-court signals and navigating the vast space of potential actions and outcomes makes it difficult for existing approaches to swiftly identify optimal strategies in response to evolving circumstances. In this study, we first formulate the sequential decision-making process as a conditional trajectory generation process. We further introduce PLAYBEST (PLAYer BEhavior SynThesis), a method for enhancing player decision-making. We extend the state-of-the-art generative model, diffusion probabilistic model, to learn challenging multi-agent environmental dynamics from historical National Basketball Association (NBA) player motion tracking data. To incorporate data-driven strategies, an auxiliary value function is trained using the play-by-play data with corresponding rewards acting as the plan guidance. To accomplish reward-guided trajectory generation, conditional sampling is introduced to condition the diffusion model on the value function and conduct classifier-guided sampling. We validate the effectiveness of PLAYBEST via comprehensive simulation studies from real-world data, contrasting the generated trajectories and play strategies with those employed by professional basketball teams. Our results reveal that the model excels at generating high-quality basketball trajectories that yield efficient plays, surpassing conventional planning techniques in terms of adaptability, flexibility, and overall performance. Moreover, the synthesized play strategies exhibit a remarkable alignment with professional tactics, highlighting the model's capacity to capture the intricate dynamics of basketball games.
Long-Term Fairness with Unknown Dynamics
Yin, Tongxin, Raab, Reilly, Liu, Mingyan, Liu, Yang
As machine learning (ML) algorithms are deployed for tasks with real-world social consequences (e.g., school admissions, loan approval, medical interventions, etc.), the possibility exists for runaway social inequalities (Crawford and Calo, 2016; Chaney et al., 2018; Fuster et al., 2018; Ensign et al., 2018). While "fairness" has become a salient ethical concern in contemporary research, the closed-loop dynamics of real-world systems comprising ML policies and populations that mutually adapt to each other (Figure 1 in the supplementary material) remain poorly understood. In this paper, our primary contribution is to consider the problem of long-term fairness, or algorithmic fairness in the context of a dynamically responsive population, as a reinforcement learning (RL) problem subject to constraint. In our formulation, the central learning task is to develop a policy that minimizes cumulative loss (e.g., financial risk, negative educational outcomes, misdiagnoses, etc.) incurred by an ML agent interacting with a human population up to a finite time horizon, subject to constraints on cumulative "violations of fairness", which we refer to in a single time step as disparity and cumulatively as distortion.
Performative Federated Learning: A Solution to Model-Dependent and Heterogeneous Distribution Shifts
Jin, Kun, Yin, Tongxin, Chen, Zhongzhu, Sun, Zeyu, Zhang, Xueru, Liu, Yang, Liu, Mingyan
Traditional learning problems typically assume data distributions to be static. For applications such as face recognition, this is largely true and designing algorithms under such an assumption in general does not impact learning efficacy. This, however, is not true in many other domains. In some cases, there may be a natural evolution and shift in the distribution, e.g., in weather and climate data, in which case new data need to be acquired periodically and the algorithm re-trained to remain up to date. In other cases, the distribution shift is the result of the very learning outcome, when individuals respond to the algorithmic decisions they are subjected to. For instance, when users with certain accents perceive larger-than-acceptable errors from a speech recognition software and therefore stop using it, this can directly impact the type of speech samples collected by the software used for training the next generation of the product. Another example is "gaming the algorithm", where users through honest or dishonest means attempt to improve critical features so as to obtain a favorable decision by the algorithm (e.g., in loan approvals or job applications). This again can directly lead to the distributional change in features and label that the algorithm relies on for decision making.
Online Algorithms for the Multi-Armed Bandit Problem with Markovian Rewards
Tekin, Cem, Liu, Mingyan
We consider the classical multi-armed bandit problem with Markovian rewards. When played an arm changes its state in a Markovian fashion while it remains frozen when not played. The player receives a state-dependent reward each time it plays an arm. The number of states and the state transition probabilities of an arm are unknown to the player. The player's objective is to maximize its long-term total reward by learning the best arm over time. We show that under certain conditions on the state transition probabilities of the arms, a sample mean based index policy achieves logarithmic regret uniformly over the total number of trials. The result shows that sample mean based index policies can be applied to learning problems under the rested Markovian bandit model without loss of optimality in the order. Moreover, comparision between Anantharam's index policy and UCB shows that by choosing a small exploration parameter UCB can have a smaller regret than Anantharam's index policy.
Adversarial Objects Against LiDAR-Based Autonomous Driving Systems
Cao, Yulong, Xiao, Chaowei, Yang, Dawei, Fang, Jing, Yang, Ruigang, Liu, Mingyan, Li, Bo
Deep neural networks (DNNs) are found to be vulnerable against adversarial examples, which are carefully crafted inputs with a small magnitude of perturbation aiming to induce arbitrarily incorrect predictions. Recent studies show that adversarial examples can pose a threat to real-world security-critical applications: a "physically adversarial Stop Sign" can be synthesized such that the autonomous driving cars will misrecognize it as others (e.g., a speed limit sign). However, these image-based adversarial examples cannot easily alter 3D scans such as widely equipped LiDAR or radar on autonomous vehicles. In this paper, we reveal the potential vulnerabilities of LiDAR-based autonomous driving detection systems, by proposing an optimization based approach LiDAR-Adv to generate real-world adversarial objects that can evade the LiDAR-based detection systems under various conditions. We first explore the vulnerabilities of LiDAR using an evolutionbased blackbox attack algorithm, and then propose a strong attack strategy, using our gradient-based approach LiDAR-Adv. We test the generated adversarial objects on the Baidu Apollo autonomous driving platform and show that such physical systems are indeed vulnerable to the proposed attacks. We 3D-print our adversarial objects and perform physical experiments with LiDAR equipped cars to illustrate the effectiveness of LiDAR-Adv. Please find more visualizations and physical experimental results on this website: https://sites.google.com/view/lidar-adv.
Long term impact of fair machine learning in sequential decision making: representation disparity and group retention
Zhang, Xueru, Khalili, Mohammad Mahdi, Tekin, Cem, Liu, Mingyan
Machine learning models trained on data from multiple demographic groups can inherit representation disparity (Hashimoto et al., 2018) that may exist in the data: the group contributing less to the training process may suffer higher loss in model accuracy; this in turn can degrade population retention in these groups over time in terms of their contribution to the training process of future models, which then exacerbates representation disparity in the long run. In this study, we seek to understand the interplay between the model accuracy and the underlying group representation and how they evolve in a sequential decision setting over an infinite horizon, and how the use of fair machine learning plays a role in this process. Using a simple user dynamics (arrival and departure) model, we characterize the long-term property of using machine learning models under a set of fairness criteria imposed on each stage of the decision process, including the commonly used statistical parity and equal opportunity fairness. We show that under this particular arrival/departure model, both these criteria cause the representation disparity to worsen over time, resulting in groups diminishing entirely from the sample pool, while the criterion of equalized loss fares much better. Our results serve to highlight the fact that fairness cannot be defined outside the larger feedback loop where past actions taken by users (who are either subject to the decisions made by the algorithm or whose data are used to train the algorithm or both) will determine future observations and decisions.
Realistic Adversarial Examples in 3D Meshes
Yang, Dawei, Xiao, Chaowei, Li, Bo, Deng, Jia, Liu, Mingyan
Highly expressive models such as deep neural networks (DNNs) have been widely applied to various applications and achieved increasing success. However, recent studies show that such machine learning models appear to be vulnerable against adversarial examples. So far adversarial examples have been heavily explored for 2D images, while few works have conducted to understand vulnerabilities of 3D objects which exist in real world, where 3D objects are projected to 2D domains by photo taking for different learning (recognition) tasks. In this paper, we consider adversarial behaviors in practical scenarios by manipulating the shape and texture of a given 3D mesh representation of an object. Our goal is to project the optimized "adversarial meshes" to 2D with a photorealistic renderer, and still able to mislead different machine learning models. Extensive experiments show that by generating unnoticeable 3D adversarial perturbation on shape or texture for a 3D mesh, the corresponding projected 2D instance can either lead classifiers to misclassify the victim object as an arbitrary malicious target, or hide any target object within the scene from object detectors. We conduct human studies to show that our optimized adversarial 3D perturbation is highly unnoticeable for human vision systems. In addition to the subtle perturbation for a given 3D mesh, we also propose to synthesize a realistic 3D mesh and put in a scene mimicking similar rendering conditions and therefore attack different machine learning models. In-depth analysis of transferability among various 3D renderers and vulnerable regions of meshes are provided to help better understand adversarial behaviors in real-world.
Improving the Privacy and Accuracy of ADMM-Based Distributed Algorithms
Zhang, Xueru, Khalili, Mohammad Mahdi, Liu, Mingyan
Alternating direction method of multiplier (ADMM) is a popular method used to design distributed versions of a machine learning algorithm, whereby local computations are performed on local data with the output exchanged among neighbors in an iterative fashion. During this iterative process the leakage of data privacy arises. A differentially private ADMM was proposed in prior work (Zhang & Zhu, 2017) where only the privacy loss of a single node during one iteration was bounded, a method that makes it difficult to balance the tradeoff between the utility attained through distributed computation and privacy guarantees when considering the total privacy loss of all nodes over the entire iterative process. We propose a perturbation method for ADMM where the perturbed term is correlated with the penalty parameters; this is shown to improve the utility and privacy simultaneously. The method is based on a modified ADMM where each node independently determines its own penalty parameter in every iteration and decouples it from the dual updating step size. The condition for convergence of the modified ADMM and the lower bound on the convergence rate are also derived.