Goto

Collaborating Authors

 Liu, Manqing


Doubly Robust Monte Carlo Tree Search

arXiv.org Machine Learning

We present Doubly Robust Monte Carlo Tree Search (DR-MCTS), a novel algorithm that integrates Doubly Robust (DR) off-policy estimation into Monte Carlo Tree Search (MCTS) to enhance sample efficiency and decision quality in complex environments. Our approach introduces a hybrid estimator that combines MCTS rollouts with DR estimation, offering theoretical guarantees of unbiasedness and variance reduction under specified conditions. Empirical evaluations in Tic-Tac-Toe and the partially observable VirtualHome environment demonstrate DR-MCTS's superior performance over standard MCTS. In Tic-Tac-Toe, DR-MCTS achieves an 88% win rate compared to a 10% win rate for standard MCTS. In compound VirtualHome tasks, DR-MCTS attains a 20.7% success rate versus 10.3% for standard MCTS. Our scaling analysis reveals that DR-MCTS exhibits better sample efficiency, notably outperforming standard MCTS with larger language models while using a smaller model. These results underscore DR-MCTS's potential for efficient decision-making in complex, real-world scenarios where sample efficiency is paramount.


DAG-aware Transformer for Causal Effect Estimation

arXiv.org Machine Learning

Causal inference is a critical task across fields such as healthcare, economics, and the social sciences. While recent advances in machine learning, especially those based on the deep-learning architectures, have shown potential in estimating causal effects, existing approaches often fall short in handling complex causal structures and lack adaptability across various causal scenarios. In this paper, we present a novel transformer-based method for causal inference that overcomes these challenges. The core innovation of our model lies in its integration of causal Directed Acyclic Graphs (DAGs) directly into the attention mechanism, enabling it to accurately model the underlying causal structure. This allows for flexible estimation of both average treatment effects (ATE) and conditional average treatment effects (CATE). Extensive experiments on both synthetic and real-world datasets demonstrate that our approach surpasses existing methods in estimating causal effects across a wide range of scenarios. The flexibility and robustness of our model make it a valuable tool for researchers and practitioners tackling complex causal inference problems.