Goto

Collaborating Authors

 Liu, Jeremiah


RRM: Robust Reward Model Training Mitigates Reward Hacking

arXiv.org Artificial Intelligence

Reward models (RMs) play a pivotal role in aligning large language models (LLMs) with human preferences. However, traditional RM training, which relies on response pairs tied to specific prompts, struggles to disentangle prompt-driven preferences from prompt-independent artifacts, such as response length and format. In this work, we expose a fundamental limitation of current RM training methods, where RMs fail to effectively distinguish between contextual signals and irrelevant artifacts when determining preferences. To address this, we introduce a causal framework that learns preferences independent of these artifacts and propose a novel data augmentation technique designed to eliminate them. Extensive experiments show that our approach successfully filters out undesirable artifacts, yielding a more robust reward model (RRM). Our RRM improves the performance of a pairwise reward model trained on Gemma-2-9b-it, on Reward-Bench, increasing accuracy from 80.61% to 84.15%. Additionally, we train two DPO policies using both the RM and RRM, demonstrating that the RRM significantly enhances DPO-aligned policies, improving MT-Bench scores from 7.27 to 8.31 and length-controlled win-rates in AlpacaEval-2 from 33.46% to 52.49%. Reinforcement Learning from Human Feedback (RLHF) has become a cornerstone in aligning large language models (LLMs) with human preferences to produce responses that are more helpful, honest, and harmless (Ouyang et al., 2022; Bai et al., 2022a). This approach involves training a reward model (RM) on human feedback, which then guides the LLM to generate high-quality responses through reinforcement learning.


Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context

arXiv.org Artificial Intelligence

In this report, we introduce the Gemini 1.5 family of models, representing the next generation of highly compute-efficient multimodal models capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. The family includes two new models: (1) an updated Gemini 1.5 Pro, which exceeds the February version on the great majority of capabilities and benchmarks; (2) Gemini 1.5 Flash, a more lightweight variant designed for efficiency with minimal regression in quality. Gemini 1.5 models achieve near-perfect recall on long-context retrieval tasks across modalities, improve the state-of-the-art in long-document QA, long-video QA and long-context ASR, and match or surpass Gemini 1.0 Ultra's state-of-the-art performance across a broad set of benchmarks. Studying the limits of Gemini 1.5's long-context ability, we find continued improvement in next-token prediction and near-perfect retrieval (>99%) up to at least 10M tokens, a generational leap over existing models such as Claude 3.0 (200k) and GPT-4 Turbo (128k). Finally, we highlight real-world use cases, such as Gemini 1.5 collaborating with professionals on completing their tasks achieving 26 to 75% time savings across 10 different job categories, as well as surprising new capabilities of large language models at the frontier; when given a grammar manual for Kalamang, a language with fewer than 200 speakers worldwide, the model learns to translate English to Kalamang at a similar level to a person who learned from the same content.


Robust Disaster Assessment from Aerial Imagery Using Text-to-Image Synthetic Data

arXiv.org Artificial Intelligence

We present a simple and efficient method to leverage emerging text-to-image generative models in creating large-scale synthetic supervision for the task of damage assessment from aerial images. While significant recent advances have resulted in improved techniques for damage assessment using aerial or satellite imagery, they still suffer from poor robustness to domains where manual labeled data is unavailable, directly impacting post-disaster humanitarian assistance in such under-resourced geographies. Our contribution towards improving domain robustness in this scenario is two-fold. Firstly, we leverage the text-guided mask-based image editing capabilities of generative models and build an efficient and easily scalable pipeline to generate thousands of post-disaster images from low-resource domains. Secondly, we propose a simple two-stage training approach to train robust models while using manual supervision from different source domains along with the generated synthetic target domain data. We validate the strength of our proposed framework under cross-geography domain transfer setting from xBD and SKAI images in both single-source and multi-source settings, achieving significant improvements over a source-only baseline in each case.


Using Domain Knowledge to Guide Dialog Structure Induction via Neural Probabilistic Soft Logic

arXiv.org Artificial Intelligence

Dialog Structure Induction (DSI) is the task of inferring the latent dialog structure (i.e., a set of dialog states and their temporal transitions) of a given goal-oriented dialog. It is a critical component for modern dialog system design and discourse analysis. Existing DSI approaches are often purely data-driven, deploy models that infer latent states without access to domain knowledge, underperform when the training corpus is limited/noisy, or have difficulty when test dialogs exhibit distributional shifts from the training domain. This work explores a neural-symbolic approach as a potential solution to these problems. We introduce Neural Probabilistic Soft Logic Dialogue Structure Induction (NEUPSL DSI), a principled approach that injects symbolic knowledge into the latent space of a generative neural model. We conduct a thorough empirical investigation on the effect of NEUPSL DSI learning on hidden representation quality, few-shot learning, and out-of-domain generalization performance. Over three dialog structure induction datasets and across unsupervised and semi-supervised settings for standard and cross-domain generalization, the injection of symbolic knowledge using NEUPSL DSI provides a consistent boost in performance over the canonical baselines.


Gemini: A Family of Highly Capable Multimodal Models

arXiv.org Artificial Intelligence

This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultra model advances the state of the art in 30 of 32 of these benchmarks - notably being the first model to achieve human-expert performance on the well-studied exam benchmark MMLU, and improving the state of the art in every one of the 20 multimodal benchmarks we examined. We believe that the new capabilities of Gemini models in cross-modal reasoning and language understanding will enable a wide variety of use cases and we discuss our approach toward deploying them responsibly to users.


On Uncertainty Calibration and Selective Generation in Probabilistic Neural Summarization: A Benchmark Study

arXiv.org Artificial Intelligence

Modern deep models for summarization attains impressive benchmark performance, but they are prone to generating miscalibrated predictive uncertainty. This means that they assign high confidence to low-quality predictions, leading to compromised reliability and trustworthiness in real-world applications. Probabilistic deep learning methods are common solutions to the miscalibration problem. However, their relative effectiveness in complex autoregressive summarization tasks are not well-understood. In this work, we thoroughly investigate different state-of-the-art probabilistic methods' effectiveness in improving the uncertainty quality of the neural summarization models, across three large-scale benchmarks with varying difficulty. We show that the probabilistic methods consistently improve the model's generation and uncertainty quality, leading to improved selective generation performance (i.e., abstaining from low-quality summaries) in practice. We also reveal notable failure patterns of probabilistic methods widely-adopted in NLP community (e.g., Deep Ensemble and Monte Carlo Dropout), cautioning the importance of choosing appropriate method for the data setting.


Neural-Symbolic Inference for Robust Autoregressive Graph Parsing via Compositional Uncertainty Quantification

arXiv.org Artificial Intelligence

Pre-trained seq2seq models excel at graph semantic parsing with rich annotated data, but generalize worse to out-of-distribution (OOD) and long-tail examples. In comparison, symbolic parsers under-perform on population-level metrics, but exhibit unique strength in OOD and tail generalization. In this work, we study compositionality-aware approach to neural-symbolic inference informed by model confidence, performing fine-grained neural-symbolic reasoning at subgraph level (i.e., nodes and edges) and precisely targeting subgraph components with high uncertainty in the neural parser. As a result, the method combines the distinct strength of the neural and symbolic approaches in capturing different aspects of the graph prediction, leading to well-rounded generalization performance both across domains and in the tail. We empirically investigate the approach in the English Resource Grammar (ERG) parsing problem on a diverse suite of standard in-domain and seven OOD corpora. Our approach leads to 35.26% and 35.60% error reduction in aggregated Smatch score over neural and symbolic approaches respectively, and 14% absolute accuracy gain in key tail linguistic categories over the neural model, outperforming prior state-of-art methods that do not account for compositionality or uncertainty.


Reliable Graph Neural Networks for Drug Discovery Under Distributional Shift

arXiv.org Artificial Intelligence

The concern of overconfident mis-predictions under distributional shift demands extensive reliability research on Graph Neural Networks used in critical tasks in drug discovery. Here we first introduce CardioTox, a real-world benchmark on drug cardio-toxicity to facilitate such efforts. Our exploratory study shows overconfident mis-predictions are often distant from training data. That leads us to develop distance-aware GNNs: GNN-SNGP. Through evaluation on CardioTox and three established benchmarks, we demonstrate GNN-SNGP's effectiveness in increasing distance-awareness, reducing overconfident mis-predictions and making better calibrated predictions without sacrificing accuracy performance. Our ablation study further reveals the representation learned by GNN-SNGP improves distance-preservation over its base architecture and is one major factor for improvements.


Deep Classifiers with Label Noise Modeling and Distance Awareness

arXiv.org Machine Learning

Uncertainty estimation in deep learning has recently emerged as a crucial area of interest to advance reliability and robustness in safety-critical applications. While there have been many proposed methods that either focus on distance-aware model uncertainties for out-of-distribution detection or on input-dependent label uncertainties for in-distribution calibration, both of these types of uncertainty are often necessary. In this work, we propose the HetSNGP method for jointly modeling the model and data uncertainty. We show that our proposed model affords a favorable combination between these two complementary types of uncertainty and thus outperforms the baseline methods on some challenging out-of-distribution datasets, including CIFAR-100C, Imagenet-C, and Imagenet-A. Moreover, we propose HetSNGP Ensemble, an ensembled version of our method which adds an additional type of uncertainty and also outperforms other ensemble baselines.


Revisiting One-vs-All Classifiers for Predictive Uncertainty and Out-of-Distribution Detection in Neural Networks

arXiv.org Machine Learning

Accurate estimation of predictive uncertainty in modern neural networks is critical to achieve well calibrated predictions and detect out-of-distribution (OOD) inputs. The most promising approaches have been predominantly focused on improving model uncertainty (e.g. deep ensembles and Bayesian neural networks) and post-processing techniques for OOD detection (e.g. ODIN and Mahalanobis distance). However, there has been relatively little investigation into how the parametrization of the probabilities in discriminative classifiers affects the uncertainty estimates, and the dominant method, softmax cross-entropy, results in misleadingly high confidences on OOD data and under covariate shift. We investigate alternative ways of formulating probabilities using (1) a one-vs-all formulation to capture the notion of "none of the above", and (2) a distance-based logit representation to encode uncertainty as a function of distance to the training manifold. We show that one-vs-all formulations can improve calibration on image classification tasks, while matching the predictive performance of softmax without incurring any additional training or test-time complexity.