Goto

Collaborating Authors

 Liu, Hongyu


Deep Symbolic Optimization for Combinatorial Optimization: Accelerating Node Selection by Discovering Potential Heuristics

arXiv.org Artificial Intelligence

Combinatorial optimization (CO) is one of the most fundamental mathematical models in real-world applications. Traditional CO solvers, such as Branch-and-Bound (B&B) solvers, heavily rely on expert-designed heuristics, which are reliable but require substantial manual tuning. Recent studies have leveraged deep learning (DL) models as an alternative to capture rich feature patterns for improved performance on GPU machines. Nonetheless, the drawbacks of high training and inference costs, as well as limited interpretability, severely hinder the adoption of DL methods in real-world applications. To address these challenges, we propose a novel deep symbolic optimization learning framework that combines their advantages. Specifically, we focus on the node selection module within B&B solvers -- namely, deep symbolic optimization for node selection (Dso4NS). With data-driven approaches, Dso4NS guides the search for mathematical expressions within the high-dimensional discrete symbolic space and then incorporates the highest-performing mathematical expressions into a solver. The data-driven model captures the rich feature information in the input data and generates symbolic expressions, while the expressions deployed in solvers enable fast inference with high interpretability. Experiments demonstrate the effectiveness of Dso4NS in learning high-quality expressions, outperforming existing approaches on a CPU machine. Encouragingly, the learned CPU-based policies consistently achieve performance comparable to state-of-the-art GPU-based approaches.


LLMs Meet Multimodal Generation and Editing: A Survey

arXiv.org Artificial Intelligence

With the recent advancement in large language models (LLMs), there is a growing interest in combining LLMs with multimodal learning. Previous surveys of multimodal large language models (MLLMs) mainly focus on multimodal understanding. This survey elaborates on multimodal generation and editing across various domains, comprising image, video, 3D, and audio. Specifically, we summarize the notable advancements with milestone works in these fields and categorize these studies into LLM-based and CLIP/T5-based methods. Then, we summarize the various roles of LLMs in multimodal generation and exhaustively investigate the critical technical components behind these methods and the multimodal datasets utilized in these studies. Additionally, we dig into tool-augmented multimodal agents that can leverage existing generative models for human-computer interaction. Lastly, we discuss the advancements in the generative AI safety field, investigate emerging applications, and discuss future prospects. Our work provides a systematic and insightful overview of multimodal generation and processing, which is expected to advance the development of Artificial Intelligence for Generative Content (AIGC) and world models. A curated list of all related papers can be found at https://github.com/YingqingHe/Awesome-LLMs-meet-Multimodal-Generation


Intelligent Diagnosis of Alzheimer's Disease Based on Machine Learning

arXiv.org Artificial Intelligence

This study is based on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset and aims to explore early detection and disease progression in Alzheimer's disease (AD). We employ innovative data preprocessing strategies, including the use of the random forest algorithm to fill missing data and the handling of outliers and invalid data, thereby fully mining and utilizing these limited data resources. Through Spearman correlation coefficient analysis, we identify some features strongly correlated with AD diagnosis. We build and test three machine learning models using these features: random forest, XGBoost, and support vector machine (SVM). Among them, the XGBoost model performs the best in terms of diagnostic performance, achieving an accuracy of 91%. Overall, this study successfully overcomes the challenge of missing data and provides valuable insights into early detection of Alzheimer's disease, demonstrating its unique research value and practical significance.


A Risk-aware Planning Framework of UGVs in Off-Road Environment

arXiv.org Artificial Intelligence

Planning module is an essential component of intelligent vehicle study. In this paper, we address the risk-aware planning problem of UGVs through a global-local planning framework which seamlessly integrates risk assessment methods. In particular, a global planning algorithm named Coarse2fine A* is proposed, which incorporates a potential field approach to enhance the safety of the planning results while ensuring the efficiency of the algorithm. A deterministic sampling method for local planning is leveraged and modified to suit off-road environment. It also integrates a risk assessment model to emphasize the avoidance of local risks. The performance of the algorithm is demonstrated through simulation experiments by comparing it with baseline algorithms, where the results of Coarse2fine A* are shown to be approximately 30% safer than those of the baseline algorithms. The practicality and effectiveness of the proposed planning framework are validated by deploying it on a real-world system consisting of a control center and a practical UGV platform.


YAYI 2: Multilingual Open-Source Large Language Models

arXiv.org Artificial Intelligence

As the latest advancements in natural language processing, large language models (LLMs) have achieved human-level language understanding and generation abilities in many real-world tasks, and even have been regarded as a potential path to the artificial general intelligence. To better facilitate research on LLMs, many open-source LLMs, such as Llama 2 and Falcon, have recently been proposed and gained comparable performances to proprietary models. However, these models are primarily designed for English scenarios and exhibit poor performances in Chinese contexts. In this technical report, we propose YAYI 2, including both base and chat models, with 30 billion parameters. YAYI 2 is pre-trained from scratch on a multilingual corpus which contains 2.65 trillion tokens filtered by our pre-training data processing pipeline. The base model is aligned with human values through supervised fine-tuning with millions of instructions and reinforcement learning from human feedback. Extensive experiments on multiple benchmarks, such as MMLU and CMMLU, consistently demonstrate that the proposed YAYI 2 outperforms other similar sized open-source models.


An inverse scattering approach for geometric body generation: a machine learning perspective

arXiv.org Machine Learning

In this paper, we are concerned with the 2D and 3D geometric shape generation by prescribing a set of characteristic values of a specific geometric body. One of the major motivations of our study is the 3D human body generation in various applications. We develop a novel method that can generate the desired body with customized characteristic values. The proposed method follows a machine-learning flavour that generates the inferred geometric body with the input characteristic parameters from a training dataset. One of the critical ingredients and novelties of our method is the borrowing of inverse scattering techniques in the theory of wave propagation to the body generation. This is done by establishing a delicate one-to-one correspondence between a geometric body and the far-field pattern of a source scattering problem governed by the Helmholtz system. It in turn enables us to establish a one-to-one correspondence between the geometric body space and the function space defined by the far-field patterns. Hence, the far-field patterns can act as the shape generators. The shape generation with prescribed characteristic parameters is achieved by first manipulating the shape generators and then reconstructing the corresponding geometric body from the obtained shape generator by a stable multiple-frequency Fourier method. Our method is easy to implement and produces more efficient and stable body generations. We provide both theoretical analysis and extensive numerical experiments for the proposed method. The study is the first attempt to introduce inverse scattering approaches in combination with machine learning to the geometric body generation and it opens up many opportunities for further developments.