Liu, Dianbo
Auto-Bench: An Automated Benchmark for Scientific Discovery in LLMs
Chen, Tingting, Anumasa, Srinivas, Lin, Beibei, Shah, Vedant, Goyal, Anirudh, Liu, Dianbo
Given the remarkable performance of Large Language Models (LLMs), an important question arises: Can LLMs conduct human-like scientific research and discover new knowledge, and act as an AI scientist? Scientific discovery is an iterative process that demands efficient knowledge updating and encoding. It involves understanding the environment, identifying new hypotheses, and reasoning about actions; however, no standardized benchmark specifically designed for scientific discovery exists for LLM agents. In response to these limitations, we introduce a novel benchmark, \textit{Auto-Bench}, that encompasses necessary aspects to evaluate LLMs for scientific discovery in both natural and social sciences. Our benchmark is based on the principles of causal graph discovery. It challenges models to uncover hidden structures and make optimal decisions, which includes generating valid justifications. By engaging interactively with an oracle, the models iteratively refine their understanding of underlying interactions, the chemistry and social interactions, through strategic interventions. We evaluate state-of-the-art LLMs, including GPT-4, Gemini, Qwen, Claude, and Llama, and observe a significant performance drop as the problem complexity increases, which suggests an important gap between machine and human intelligence that future development of LLMs need to take into consideration.
Multi-Novelty: Improve the Diversity and Novelty of Contents Generated by Large Language Models via inference-time Multi-Views Brainstorming
Lagzian, Arash, Anumasa, Srinivas, Liu, Dianbo
Large Language Models (LLMs) demonstrate remarkable proficiency in generating accurate and fluent text. However, they often struggle with diversity and novelty, leading to repetitive or overly deterministic responses. These limitations stem from constraints in training data, including gaps in specific knowledge domains, outdated information, and an over-reliance on textual sources. Such shortcomings reduce their effectiveness in tasks requiring creativity, multi-perspective reasoning, and exploratory thinking, such as LLM based AI scientist agents and creative artist agents . To address this challenge, we introduce inference-time multi-view brainstorming method, a novel approach that enriches input prompts with diverse perspectives derived from both textual and visual sources, which we refere to as "Multi-Novelty". By incorporating additional contextual information as diverse starting point for chain of thoughts, this method enhances the variety and creativity of generated outputs. Importantly, our approach is model-agnostic, requiring no architectural modifications and being compatible with both open-source and proprietary LLMs.
Can OpenAI o1 Reason Well in Ophthalmology? A 6,990-Question Head-to-Head Evaluation Study
Srinivasan, Sahana, Ai, Xuguang, Zou, Minjie, Zou, Ke, Kim, Hyunjae, Lo, Thaddaeus Wai Soon, Pushpanathan, Krithi, Kong, Yiming, Li, Anran, Singer, Maxwell, Jin, Kai, Antaki, Fares, Chen, David Ziyou, Liu, Dianbo, Adelman, Ron A., Chen, Qingyu, Tham, Yih Chung
Question: What is the performance and reasoning ability of OpenAI o1 compared to other large language models in addressing ophthalmology-specific questions? Findings: This study evaluated OpenAI o1 and five LLMs using 6,990 ophthalmological questions from MedMCQA. O1 achieved the highest accuracy (0.88) and macro-F1 score but ranked third in reasoning capabilities based on text-generation metrics. Across subtopics, o1 ranked first in ``Lens'' and ``Glaucoma'' but second to GPT-4o in ``Corneal and External Diseases'', ``Vitreous and Retina'' and ``Oculoplastic and Orbital Diseases''. Subgroup analyses showed o1 performed better on queries with longer ground truth explanations. Meaning: O1's reasoning enhancements may not fully extend to ophthalmology, underscoring the need for domain-specific refinements to optimize performance in specialized fields like ophthalmology.
Masked Generative Priors Improve World Models Sequence Modelling Capabilities
Meo, Cristian, Lica, Mircea, Ikram, Zarif, Nakano, Akihiro, Shah, Vedant, Didolkar, Aniket Rajiv, Liu, Dianbo, Goyal, Anirudh, Dauwels, Justin
Deep Reinforcement Learning (RL) has become the leading approach for creating artificial agents in complex environments. Model-based approaches, which are RL methods with world models that predict environment dynamics, are among the most promising directions for improving data efficiency, forming a critical step toward bridging the gap between research and real-world deployment. In particular, world models enhance sample efficiency by learning in imagination, which involves training a generative sequence model of the environment in a self-supervised manner. Recently, Masked Generative Modelling has emerged as a more efficient and superior inductive bias for modelling and generating token sequences. Building on the Efficient Stochastic Transformer-based World Models (STORM) architecture, we replace the traditional MLP prior with a Masked Generative Prior (e.g., MaskGIT Prior) and introduce GIT-STORM. We evaluate our model on two downstream tasks: reinforcement learning and video prediction. GIT-STORM demonstrates substantial performance gains in RL tasks on the Atari 100k benchmark. Moreover, we apply Transformer-based World Models to continuous action environments for the first time, addressing a significant gap in prior research. To achieve this, we employ a state mixer function that integrates latent state representations with actions, enabling our model to handle continuous control tasks. We validate this approach through qualitative and quantitative analyses on the DeepMind Control Suite, showcasing the effectiveness of Transformer-based World Models in this new domain. Our results highlight the versatility and efficacy of the MaskGIT dynamics prior, paving the way for more accurate world models and effective RL policies.
Representation Collapsing Problems in Vector Quantization
Zhao, Wenhao, Zou, Qiran, Shah, Rushi, Liu, Dianbo
Vector quantization is a technique in machine learning that discretizes continuous representations into a set of discrete vectors. It is widely employed in tokenizing data representations for large language models, diffusion models, and other generative models. Despite its prevalence, the characteristics and behaviors of vector quantization in generative models remain largely underexplored. In this study, we investigate representation collapse in vector quantization - a critical degradation where codebook tokens or latent embeddings lose their discriminative power by converging to a limited subset of values. This collapse fundamentally compromises the model's ability to capture diverse data patterns. By leveraging both synthetic and real datasets, we identify the severity of each type of collapses and triggering conditions. Our analysis reveals that restricted initialization and limited encoder capacity result in tokens collapse and embeddings collapse. Building on these findings, we propose potential solutions aimed at mitigating each collapse. To the best of our knowledge, this is the first comprehensive study examining representation collapsing problems in vector quantization.
Improving Discrete Optimisation Via Decoupled Straight-Through Gumbel-Softmax
Shah, Rushi, Yan, Mingyuan, Mozer, Michael Curtis, Liu, Dianbo
Discrete representations play a crucial role in many deep learning architectures, yet their non-differentiable nature poses significant challenges for gradient-based optimization. To address this issue, various gradient estimators have been developed, including the Straight-Through Gumbel-Softmax (ST-GS) estimator, which combines the Straight-Through Estimator (STE) and the Gumbel-based reparameterization trick. However, the performance of ST-GS is highly sensitive to temperature, with its selection often compromising gradient fidelity. In this work, we propose a simple yet effective extension to ST-GS by employing decoupled temperatures for forward and backward passes, which we refer to as "Decoupled ST-GS". We show that our approach significantly enhances the original ST-GS through extensive experiments across multiple tasks and datasets. We further investigate the impact of our method on gradient fidelity from multiple perspectives, including the gradient gap and the bias-variance trade-off of estimated gradients. Our findings contribute to the ongoing effort to improve discrete optimization in deep learning, offering a practical solution that balances simplicity and effectiveness.
Gaussian Mixture Vector Quantization with Aggregated Categorical Posterior
Yan, Mingyuan, Wu, Jiawei, Shah, Rushi, Liu, Dianbo
The vector quantization is a widely used method to map continuous representation to discrete space and has important application in tokenization for generative mode, bottlenecking information and many other tasks in machine learning. Vector Quantized Variational Autoencoder (VQ-VAE) is a type of variational autoencoder using discrete embedding as latent. We generalize the technique further, enriching the probabilistic framework with a Gaussian mixture as the underlying generative model. This framework leverages a codebook of latent means and adaptive variances to capture complex data distributions. This principled framework avoids various heuristics and strong assumptions that are needed with the VQ-VAE to address training instability and to improve codebook utilization. This approach integrates the benefits of both discrete and continuous representations within a variational Bayesian framework. Furthermore, by introducing the \textit{Aggregated Categorical Posterior Evidence Lower Bound} (ALBO), we offer a principled alternative optimization objective that aligns variational distributions with the generative model. Our experiments demonstrate that GM-VQ improves codebook utilization and reduces information loss without relying on handcrafted heuristics.
CodeUnlearn: Amortized Zero-Shot Machine Unlearning in Language Models Using Discrete Concept
Wu, YuXuan, Dossou, Bonaventure F. P., Liu, Dianbo
Large Language Models (LLMs) offer extensive knowledge across various domains, but they may inadvertently memorize sensitive, unauthorized, or malicious data, such as personal information in the medical and financial sectors. Machine unlearning methods aim to remove specific information from models after training to address this. However, current approaches require additional model training or struggle to effectively erase particular data points and their associated context due to LLMs' complex, dense, and continuous nature. In this study, we propose a novel amortized unlearning approach using codebook features and Sparse Autoencoders (SAEs). By leveraging a bottleneck to decompose the activation space and regulate information flow, our method efficiently unlearns targeted information while preserving the model's performance on unrelated data. To the best of our knowledge, this is the first work that successfully enables unlearning specific topics with contextual relevance in an LLM, marking a significant step towards real-world applications of machine unlearning. Large language Models (LLMs) have been widely used in various applications, generating text responses that attempt to create the equivalent of human conversations OpenAI et al. (2024). These models leverage vast scientific literature to facilitate and accelerate interdisciplinary research Taylor et al. (2022) while drawing upon large datasets of human-generated content to provide professional advice. However, in many cases, such data is a double-edged sword. Including personal information or sensitive scientific knowledge can be beneficial or, conversely, harmful. For instance, Soice et al. (2023) discusses how LLMs, when used by non-experts, can enable the creation of biological agents, posing both potential benefits and significant risks.
Brain-inspired continual pre-trained learner via silent synaptic consolidation
Ran, Xuming, Yao, Juntao, Wang, Yusong, Xu, Mingkun, Liu, Dianbo
Pre-trained models have demonstrated impressive generalization capabilities, yet they remain vulnerable to catastrophic forgetting when incrementally trained on new tasks. Existing architecture-based strategies encounter two primary challenges: 1) Integrating a pre-trained network with a trainable sub-network complicates the delicate balance between learning plasticity and memory stability across evolving tasks during learning. In this study, we introduce the Artsy, inspired by the activation mechanisms of silent synapses via spike-timing-dependent plasticity observed in mature brains, to enhance the continual learning capabilities of pre-trained models. The Artsy integrates two key components: During training, the Artsy mimics mature brain dynamics by maintaining memory stability for previously learned knowledge within the pre-trained network while simultaneously promoting learning plasticity in task-specific sub-networks. During inference, artificial silent and functional synapses are utilized to establish precise connections between the pre-synaptic neurons in the pre-trained network and the post-synaptic neurons in the sub-networks, facilitated through synaptic consolidation, thereby enabling effective extraction of relevant information from test samples. Comprehensive experimental evaluations reveal that our model significantly outperforms conventional methods on class-incremental learning tasks, while also providing enhanced biological interpretability for architecture-based approaches. Moreover, we propose that the Artsy offers a promising avenue for simulating biological synaptic mechanisms, potentially advancing our understanding of neural plasticity in both artificial and biological systems. Pre-trained artificial neural networks have demonstrated notable generalization capabilities; however, they are prone to catastrophic forgetting when exposed to sequential training on new datasets, as outlined in previous studies Wang et al. (2024).
Language Enhanced Model for Eye (LEME): An Open-Source Ophthalmology-Specific Large Language Model
Gilson, Aidan, Ai, Xuguang, Xie, Qianqian, Srinivasan, Sahana, Pushpanathan, Krithi, Singer, Maxwell B., Huang, Jimin, Kim, Hyunjae, Long, Erping, Wan, Peixing, Del Priore, Luciano V., Ohno-Machado, Lucila, Xu, Hua, Liu, Dianbo, Adelman, Ron A., Tham, Yih-Chung, Chen, Qingyu
Large Language Models (LLMs) are poised to revolutionize healthcare. Ophthalmology-specific LLMs remain scarce and underexplored. We introduced an open-source, specialized LLM for ophthalmology, termed Language Enhanced Model for Eye (LEME). LEME was initially pre-trained on the Llama2 70B framework and further fine-tuned with a corpus of ~127,000 non-copyrighted training instances curated from ophthalmology-specific case reports, abstracts, and open-source study materials. We benchmarked LEME against eight other LLMs, namely, GPT-3.5, GPT-4, three Llama2 models (7B, 13B, 70B), PMC-LLAMA 13B, Meditron 70B, and EYE-Llama (another ophthalmology-specific LLM). Evaluations included four internal validation tasks: abstract completion, fill-in-the-blank, multiple-choice questions (MCQ), and short-answer QA. External validation tasks encompassed long-form QA, MCQ, patient EHR summarization, and clinical QA. Evaluation metrics included Rouge-L scores, accuracy, and expert evaluation of correctness, completeness, and readability. In internal validations, LEME consistently outperformed its counterparts, achieving Rouge-L scores of 0.20 in abstract completion (all p<0.05), 0.82 in fill-in-the-blank (all p<0.0001), and 0.22 in short-answer QA (all p<0.0001, except versus GPT-4). In external validations, LEME excelled in long-form QA with a Rouge-L of 0.19 (all p<0.0001), ranked second in MCQ accuracy (0.68; all p<0.0001), and scored highest in EHR summarization and clinical QA (ranging from 4.24 to 4.83 out of 5 for correctness, completeness, and readability). LEME's emphasis on robust fine-tuning and the use of non-copyrighted data represents a breakthrough in open-source ophthalmology-specific LLMs, offering the potential to revolutionize execution of clinical tasks while democratizing research collaboration.