Liu, Danni
Embodied Escaping: End-to-End Reinforcement Learning for Robot Navigation in Narrow Environment
Zheng, Han, Zhang, Jiale, Jiang, Mingyang, Liu, Peiyuan, Liu, Danni, Qin, Tong, Yang, Ming
Autonomous navigation is a fundamental task for robot vacuum cleaners in indoor environments. Since their core function is to clean entire areas, robots inevitably encounter dead zones in cluttered and narrow scenarios. Existing planning methods often fail to escape due to complex environmental constraints, high-dimensional search spaces, and high difficulty maneuvers. To address these challenges, this paper proposes an embodied escaping model that leverages reinforcement learning-based policy with an efficient action mask for dead zone escaping. To alleviate the issue of the sparse reward in training, we introduce a hybrid training policy that improves learning efficiency. In handling redundant and ineffective action options, we design a novel action representation to reshape the discrete action space with a uniform turning radius. Furthermore, we develop an action mask strategy to select valid action quickly, balancing precision and efficiency. In real-world experiments, our robot is equipped with a Lidar, IMU, and two-wheel encoders. Extensive quantitative and qualitative experiments across varying difficulty levels demonstrate that our robot can consistently escape from challenging dead zones. Moreover, our approach significantly outperforms compared path planning and reinforcement learning methods in terms of success rate and collision avoidance.
Middle-Layer Representation Alignment for Cross-Lingual Transfer in Fine-Tuned LLMs
Liu, Danni, Niehues, Jan
While large language models demonstrate remarkable capabilities at task-specific applications through fine-tuning, extending these benefits across diverse languages is essential for broad accessibility. However, effective cross-lingual transfer is hindered by LLM performance gaps across languages and the scarcity of fine-tuning data in many languages. Through analysis of LLM internal representations from over 1,000+ language pairs, we discover that middle layers exhibit the strongest potential for cross-lingual alignment. Building on this finding, we propose a middle-layer alignment objective integrated into task-specific training. Our experiments on slot filling, machine translation, and structured text generation show consistent improvements in cross-lingual transfer, especially to lower-resource languages. The method is robust to the choice of alignment languages and generalizes to languages unseen during alignment. Furthermore, we show that separately trained alignment modules can be merged with existing task-specific modules, improving cross-lingual capabilities without full re-training. Our code is publicly available (https://github.com/dannigt/mid-align).
How do Multimodal Foundation Models Encode Text and Speech? An Analysis of Cross-Lingual and Cross-Modal Representations
Lee, Hyunji, Liu, Danni, Sinhamahapatra, Supriti, Niehues, Jan
Multimodal foundation models aim to create a unified representation space that abstracts away from surface features like language syntax or modality differences. To investigate this, we study the internal representations of three recent models, analyzing the model activations from semantically equivalent sentences across languages in the text and speech modalities. Our findings reveal that: 1) Cross-modal representations converge over model layers, except in the initial layers specialized at text and speech processing. 2) Length adaptation is crucial for reducing the cross-modal gap between text and speech, although current approaches' effectiveness is primarily limited to high-resource languages. 3) Speech exhibits larger cross-lingual differences than text. 4) For models not explicitly trained for modality-agnostic representations, the modality gap is more prominent than the language gap.
SciEx: Benchmarking Large Language Models on Scientific Exams with Human Expert Grading and Automatic Grading
Dinh, Tu Anh, Mullov, Carlos, Bรคrmann, Leonard, Li, Zhaolin, Liu, Danni, Reiร, Simon, Lee, Jueun, Lerzer, Nathan, Ternava, Fabian, Gao, Jianfeng, Rรถddiger, Tobias, Waibel, Alexander, Asfour, Tamim, Beigl, Michael, Stiefelhagen, Rainer, Dachsbacher, Carsten, Bรถhm, Klemens, Niehues, Jan
With the rapid development of Large Language Models (LLMs), it is crucial to have benchmarks which can evaluate the ability of LLMs on different domains. One common use of LLMs is performing tasks on scientific topics, such as writing algorithms, querying databases or giving mathematical proofs. Inspired by the way university students are evaluated on such tasks, in this paper, we propose SciEx - a benchmark consisting of university computer science exam questions, to evaluate LLMs ability on solving scientific tasks. SciEx is (1) multilingual, containing both English and German exams, and (2) multi-modal, containing questions that involve images, and (3) contains various types of freeform questions with different difficulty levels, due to the nature of university exams. We evaluate the performance of various state-of-the-art LLMs on our new benchmark. Since SciEx questions are freeform, it is not straightforward to evaluate LLM performance. Therefore, we provide human expert grading of the LLM outputs on SciEx. We show that the free-form exams in SciEx remain challenging for the current LLMs, where the best LLM only achieves 59.4\% exam grade on average. We also provide detailed comparisons between LLM performance and student performance on SciEx. To enable future evaluation of new LLMs, we propose using LLM-as-a-judge to grade the LLM answers on SciEx. Our experiments show that, although they do not perform perfectly on solving the exams, LLMs are decent as graders, achieving 0.948 Pearson correlation with expert grading.
Language-Independent Representations Improve Zero-Shot Summarization
Solovyev, Vladimir, Liu, Danni, Niehues, Jan
Finetuning pretrained models on downstream generation tasks often leads to catastrophic forgetting in zero-shot conditions. In this work, we focus on summarization and tackle the problem through the lens of language-independent representations. After training on monolingual summarization, we perform zero-shot transfer to new languages or language pairs. We first show naively finetuned models are highly language-specific in both output behavior and internal representations, resulting in poor zero-shot performance. Next, we propose query-key (QK) finetuning to decouple task-specific knowledge from the pretrained language generation abilities. Then, after showing downsides of the standard adversarial language classifier, we propose a balanced variant that more directly enforces language-agnostic representations. Moreover, our qualitative analyses show removing source language identity correlates to zero-shot summarization performance. Our code is openly available.
How Transferable are Attribute Controllers on Pretrained Multilingual Translation Models?
Liu, Danni, Niehues, Jan
Customizing machine translation models to comply with desired attributes (e.g., formality or grammatical gender) is a well-studied topic. However, most current approaches rely on (semi-)supervised data with attribute annotations. This data scarcity bottlenecks democratizing such customization possibilities to a wider range of languages, particularly lower-resource ones. This gap is out of sync with recent progress in pretrained massively multilingual translation models. In response, we transfer the attribute controlling capabilities to languages without attribute-annotated data with an NLLB-200 model as a foundation. Inspired by techniques from controllable generation, we employ a gradient-based inference-time controller to steer the pretrained model. The controller transfers well to zero-shot conditions, as it operates on pretrained multilingual representations and is attribute -- rather than language-specific. With a comprehensive comparison to finetuning-based control, we demonstrate that, despite finetuning's clear dominance in supervised settings, the gap to inference-time control closes when moving to zero-shot conditions, especially with new and distant target languages. The latter also shows stronger domain robustness. We further show that our inference-time control complements finetuning. A human evaluation on a real low-resource language, Bengali, confirms our findings. Our code is https://github.com/dannigt/attribute-controller-transfer
End-to-End Evaluation for Low-Latency Simultaneous Speech Translation
Huber, Christian, Dinh, Tu Anh, Mullov, Carlos, Pham, Ngoc Quan, Nguyen, Thai Binh, Retkowski, Fabian, Constantin, Stefan, Ugan, Enes Yavuz, Liu, Danni, Li, Zhaolin, Koneru, Sai, Niehues, Jan, Waibel, Alexander
The challenge of low-latency speech translation has recently draw significant interest in the research community as shown by several publications and shared tasks. Therefore, it is essential to evaluate these different approaches in realistic scenarios. However, currently only specific aspects of the systems are evaluated and often it is not possible to compare different approaches. In this work, we propose the first framework to perform and evaluate the various aspects of low-latency speech translation under realistic conditions. The evaluation is carried out in an end-to-end fashion. This includes the segmentation of the audio as well as the run-time of the different components. Secondly, we compare different approaches to low-latency speech translation using this framework. We evaluate models with the option to revise the output as well as methods with fixed output. Furthermore, we directly compare state-of-the-art cascaded as well as end-to-end systems. Finally, the framework allows to automatically evaluate the translation quality as well as latency and also provides a web interface to show the low-latency model outputs to the user.
KIT's Multilingual Speech Translation System for IWSLT 2023
Liu, Danni, Nguyen, Thai Binh, Koneru, Sai, Ugan, Enes Yavuz, Pham, Ngoc-Quan, Nguyen, Tuan-Nam, Dinh, Tu Anh, Mullov, Carlos, Waibel, Alexander, Niehues, Jan
Many existing speech translation benchmarks focus on native-English speech in high-quality recording conditions, which often do not match the conditions in real-life use-cases. In this paper, we describe our speech translation system for the multilingual track of IWSLT 2023, which evaluates translation quality on scientific conference talks. The test condition features accented input speech and terminology-dense contents. The task requires translation into 10 languages of varying amounts of resources. In absence of training data from the target domain, we use a retrieval-based approach (kNN-MT) for effective adaptation (+0.8 BLEU for speech translation). We also use adapters to easily integrate incremental training data from data augmentation, and show that it matches the performance of re-training. We observe that cascaded systems are more easily adaptable towards specific target domains, due to their separate modules. Our cascaded speech system substantially outperforms its end-to-end counterpart on scientific talk translation, although their performance remains similar on TED talks.
Learning an Artificial Language for Knowledge-Sharing in Multilingual Translation
Liu, Danni, Niehues, Jan
The cornerstone of multilingual neural translation is shared representations across languages. Given the theoretically infinite representation power of neural networks, semantically identical sentences are likely represented differently. While representing sentences in the continuous latent space ensures expressiveness, it introduces the risk of capturing of irrelevant features which hinders the learning of a common representation. In this work, we discretize the encoder output latent space of multilingual models by assigning encoder states to entries in a codebook, which in effect represents source sentences in a new artificial language. This discretization process not only offers a new way to interpret the otherwise black-box model representations, but, more importantly, gives potential for increasing robustness in unseen testing conditions. We validate our approach on large-scale experiments with realistic data volumes and domains. When tested in zero-shot conditions, our approach is competitive with two strong alternatives from the literature. We also use the learned artificial language to analyze model behavior, and discover that using a similar bridge language increases knowledge-sharing among the remaining languages.
Cost-Effective Training in Low-Resource Neural Machine Translation
Koneru, Sai, Liu, Danni, Niehues, Jan
While Active Learning (AL) techniques are explored in Neural Machine Translation (NMT), only a few works focus on tackling low annotation budgets where a limited number of sentences can get translated. Such situations are especially challenging and can occur for endangered languages with few human annotators or having cost constraints to label large amounts of data. Although AL is shown to be helpful with large budgets, it is not enough to build high-quality translation systems in these low-resource conditions. In this work, we propose a cost-effective training procedure to increase the performance of NMT models utilizing a small number of annotated sentences and dictionary entries. Our method leverages monolingual data with self-supervised objectives and a small-scale, inexpensive dictionary for additional supervision to initialize the NMT model before applying AL. We show that improving the model using a combination of these knowledge sources is essential to exploit AL strategies and increase gains in low-resource conditions. We also present a novel AL strategy inspired by domain adaptation for NMT and show that it is effective for low budgets. We propose a new hybrid data-driven approach, which samples sentences that are diverse from the labelled data and also most similar to unlabelled data. Finally, we show that initializing the NMT model and further using our AL strategy can achieve gains of up to $13$ BLEU compared to conventional AL methods.