Goto

Collaborating Authors

 Liu, Dan


Synthetic Data Generation for Augmenting Small Samples

arXiv.org Machine Learning

Small datasets are common in health research. However, the generalization performance of machine learning models is suboptimal when the training datasets are small. To address this, data augmentation is one solution. Augmentation increases sample size and is seen as a form of regularization that increases the diversity of small datasets, leading them to perform better on unseen data. We found that augmentation improves prognostic performance for datasets that: have fewer observations, with smaller baseline AUC, have higher cardinality categorical variables, and have more balanced outcome variables. No specific generative model consistently outperformed the others. We developed a decision support model that can be used to inform analysts if augmentation would be useful. For seven small application datasets, augmenting the existing data results in an increase in AUC between 4.31% (AUC from 0.71 to 0.75) and 43.23% (AUC from 0.51 to 0.73), with an average 15.55% relative improvement, demonstrating the nontrivial impact of augmentation on small datasets (p=0.0078). Augmentation AUC was higher than resampling only AUC (p=0.016). The diversity of augmented datasets was higher than the diversity of resampled datasets (p=0.046).


LuminLab: An AI-Powered Building Retrofit and Energy Modelling Platform

arXiv.org Artificial Intelligence

This paper describes the technical and conceptual development of the LuminLab platform, an online tool that integrates a purpose-fit human-centric AI chatbot and predictive energy model into a streamlined front-end that can rapidly produce and discuss building retrofit plans in natural language. The platform provides users with the ability to engage with a range of possible retrofit pathways tailored to their individual budget and building needs on-demand. Given the complicated and costly nature of building retrofit projects, which rely on a variety of stakeholder groups with differing goals and incentives, we feel that AI-powered tools such as this have the potential to pragmatically de-silo knowledge, improve communication, and empower individual homeowners to undertake incremental retrofit projects that might not happen otherwise.


LiRank: Industrial Large Scale Ranking Models at LinkedIn

arXiv.org Artificial Intelligence

We present LiRank, a large-scale ranking framework at LinkedIn that brings to production state-of-the-art modeling architectures and optimization methods. We unveil several modeling improvements, including Residual DCN, which adds attention and residual connections to the famous DCNv2 architecture. We share insights into combining and tuning SOTA architectures to create a unified model, including Dense Gating, Transformers and Residual DCN. We also propose novel techniques for calibration and describe how we productionalized deep learning based explore/exploit methods. To enable effective, production-grade serving of large ranking models, we detail how to train and compress models using quantization and vocabulary compression. We provide details about the deployment setup for large-scale use cases of Feed ranking, Jobs Recommendations, and Ads click-through rate (CTR) prediction. We summarize our learnings from various A/B tests by elucidating the most effective technical approaches. These ideas have contributed to relative metrics improvements across the board at LinkedIn: +0.5% member sessions in the Feed, +1.76% qualified job applications for Jobs search and recommendations, and +4.3% for Ads CTR. We hope this work can provide practical insights and solutions for practitioners interested in leveraging large-scale deep ranking systems.


Teacher-Student Architecture for Knowledge Distillation: A Survey

arXiv.org Artificial Intelligence

Although Deep neural networks (DNNs) have shown a strong capacity to solve large-scale problems in many areas, such DNNs are hard to be deployed in real-world systems due to their voluminous parameters. To tackle this issue, Teacher-Student architectures were proposed, where simple student networks with a few parameters can achieve comparable performance to deep teacher networks with many parameters. Recently, Teacher-Student architectures have been effectively and widely embraced on various knowledge distillation (KD) objectives, including knowledge compression, knowledge expansion, knowledge adaptation, and knowledge enhancement. With the help of Teacher-Student architectures, current studies are able to achieve multiple distillation objectives through lightweight and generalized student networks. Different from existing KD surveys that primarily focus on knowledge compression, this survey first explores Teacher-Student architectures across multiple distillation objectives. This survey presents an introduction to various knowledge representations and their corresponding optimization objectives. Additionally, we provide a systematic overview of Teacher-Student architectures with representative learning algorithms and effective distillation schemes. This survey also summarizes recent applications of Teacher-Student architectures across multiple purposes, including classification, recognition, generation, ranking, and regression. Lastly, potential research directions in KD are investigated, focusing on architecture design, knowledge quality, and theoretical studies of regression-based learning, respectively. Through this comprehensive survey, industry practitioners and the academic community can gain valuable insights and guidelines for effectively designing, learning, and applying Teacher-Student architectures on various distillation objectives.


Reducing the gap between streaming and non-streaming Transducer-based ASR by adaptive two-stage knowledge distillation

arXiv.org Artificial Intelligence

Transducer is one of the mainstream frameworks for streaming speech recognition. There is a performance gap between the streaming and non-streaming transducer models due to limited context. To reduce this gap, an effective way is to ensure that their hidden and output distributions are consistent, which can be achieved by hierarchical knowledge distillation. However, it is difficult to ensure the distribution consistency simultaneously because the learning of the output distribution depends on the hidden one. In this paper, we propose an adaptive two-stage knowledge distillation method consisting of hidden layer learning and output layer learning. In the former stage, we learn hidden representation with full context by applying mean square error loss function. In the latter stage, we design a power transformation based adaptive smoothness method to learn stable output distribution. It achieved 19\% relative reduction in word error rate, and a faster response for the first token compared with the original streaming model in LibriSpeech corpus.


Ternary Quantization: A Survey

arXiv.org Artificial Intelligence

Inference time, model size, and accuracy are critical for deploying deep neural network models. Numerous research efforts have been made to compress neural network models with faster inference and higher accuracy. Pruning and quantization are mainstream methods to this end. During model quantization, converting individual float values of layer weights to low-precision ones can substantially reduce the computational overhead and improve the inference speed. Many quantization methods have been studied, for example, vector quantization, low-bit quantization, and binary/ternary quantization. This survey focuses on ternary quantization. We review the evolution of ternary quantization and investigate the relationships among existing ternary quantization methods from the perspective of projection function and optimization methods.


Hyperspherical Loss-Aware Ternary Quantization

arXiv.org Artificial Intelligence

Most of the existing works use projection functions for ternary quantization in discrete space. Scaling factors and thresholds are used in some cases to improve the model accuracy. However, the gradients used for optimization are inaccurate and result in a notable accuracy gap between the full precision and ternary models. To get more accurate gradients, some works gradually increase the discrete portion of the full precision weights in the forward propagation pass, e.g., using temperature-based Sigmoid function. Instead of directly performing ternary quantization in discrete space, we push full precision weights close to ternary ones through regularization term prior to ternary quantization. In addition, inspired by the temperature-based method, we introduce a re-scaling factor to obtain more accurate gradients by simulating the derivatives of Sigmoid function. The experimental results show that our method can significantly improve the accuracy of ternary quantization in both image classification and object detection tasks.


Pruning Ternary Quantization

arXiv.org Artificial Intelligence

We propose pruning ternary quantization (PTQ), a simple, yet effective, symmetric ternary quantization method. The method significantly compresses neural network weights to a sparse ternary of [-1,0,1] and thus reduces computational, storage, and memory footprints. We show that PTQ can convert regular weights to ternary orthonormal bases by simply using pruning and L2 projection. In addition, we introduce a refined straight-through estimator to finalize and stabilize the quantized weights. Our method can provide at most 46x compression ratio on the ResNet-18 structure, with an acceptable accuracy of 65.36%, outperforming leading methods. Furthermore, PTQ can compress a ResNet-18 model from 46 MB to 955KB (~48x) and a ResNet-50 model from 99 MB to 3.3MB (~30x), while the top-1 accuracy on ImageNet drops slightly from 69.7% to 65.3% and from 76.15% to 74.47%, respectively. Our method unifies pruning and quantization and thus provides a range of size-accuracy trade-off.


Learning to Retrieve Entity-Aware Knowledge and Generate Responses with Copy Mechanism for Task-Oriented Dialogue Systems

arXiv.org Artificial Intelligence

Task-oriented conversational modeling with unstructured knowledge access, as track 1 of the 9th Dialogue System Technology Challenges (DSTC 9), requests to build a system to generate response given dialogue history and knowledge access. This challenge can be separated into three subtasks, (1) knowledge-seeking turn detection, (2) knowledge selection, and (3) knowledge-grounded response generation. We use pre-trained language models, ELECTRA and RoBERTa, as our base encoder for different subtasks. For subtask 1 and 2, the coarse-grained information like domain and entity are used to enhance knowledge usage. For subtask 3, we use a latent variable to encode dialog history and selected knowledge better and generate responses combined with copy mechanism. Meanwhile, some useful post-processing strategies are performed on the model's final output to make further knowledge usage in the generation task. As shown in released evaluation results, our proposed system ranks second under objective metrics and ranks fourth under human metrics.


Learning Efficient Lexically-Constrained Neural Machine Translation with External Memory

arXiv.org Artificial Intelligence

Recent years has witnessed dramatic progress of neural machine translation (NMT), however, the method of manually guiding the translation procedure remains to be better explored. Previous works proposed to handle such problem through lexcially-constrained beam search in the decoding phase. Unfortunately, these lexically-constrained beam search methods suffer two fatal disadvantages: high computational complexity and hard beam search which generates unexpected translations. In this paper, we propose to learn the ability of lexically-constrained translation with external memory, which can overcome the above mentioned disadvantages. For the training process, automatically extracted phrase pairs are extracted from alignment and sentence parsing, then further be encoded into an external memory. This memory is then used to provide lexically-constrained information for training through a memory-attention machanism. Various experiments are conducted on WMT Chinese to English and English to German tasks. All the results can demonstrate the effectiveness of our method.