Liu, Cunjia
Beyond Prior Limits: Addressing Distribution Misalignment in Particle Filtering
Shi, Yiwei, Hu, Jingyu, Zhang, Yu, Yang, Mengyue, Zhang, Weinan, Liu, Cunjia, Liu, Weiru
Particle filtering is a Bayesian inference method and a fundamental tool in state estimation for dynamic systems, but its effectiveness is often limited by the constraints of the initial prior distribution, a phenomenon we define as the Prior Boundary Phenomenon. This challenge arises when target states lie outside the prior's support, rendering traditional particle filtering methods inadequate for accurate estimation. Although techniques like unbounded priors and larger particle sets have been proposed, they remain computationally prohibitive and lack adaptability in dynamic scenarios. To systematically overcome these limitations, we propose the Diffusion-Enhanced Particle Filtering Framework, which introduces three key innovations: adaptive diffusion through exploratory particles, entropy-driven regularisation to prevent weight collapse, and kernel-based perturbations for dynamic support expansion. These mechanisms collectively enable particle filtering to explore beyond prior boundaries, ensuring robust state estimation for out-of-boundary targets.
Attention-Driven Hierarchical Reinforcement Learning with Particle Filtering for Source Localization in Dynamic Fields
Shi, Yiwei, Yang, Mengyue, Zhang, Qi, Zhang, Weinan, Liu, Cunjia, Liu, Weiru
In many real-world scenarios, such as gas leak detection or environmental pollutant tracking, solving the Inverse Source Localization and Characterization problem involves navigating complex, dynamic fields with sparse and noisy observations. Traditional methods face significant challenges, including partial observability, temporal and spatial dynamics, out-of-distribution generalization, and reward sparsity. To address these issues, we propose a hierarchical framework that integrates Bayesian inference and reinforcement learning. The framework leverages an attention-enhanced particle filtering mechanism for efficient and accurate belief updates, and incorporates two complementary execution strategies: Attention Particle Filtering Planning and Attention Particle Filtering Reinforcement Learning. These approaches optimize exploration and adaptation under uncertainty. Theoretical analysis proves the convergence of the attention-enhanced particle filter, while extensive experiments across diverse scenarios validate the framework's superior accuracy, adaptability, and computational efficiency. Our results highlight the framework's potential for broad applications in dynamic field estimation tasks.
Redundant Observer-Based Tracking Control for Object Extraction Using a Cable Connected UAV
Marshall, Benjamin J., Yan, Yunda, Knowles, James, Yang, Chenguang, Liu, Cunjia
A new disturbance observer based control scheme is developed for a quadrotor under the concurrent disturbances from a lightweight elastic tether cable and a lumped vertical disturbance. This elastic tether is unusual as it creates a disturbance proportional to the multicopter's translational movement. This paper takes an observer-based approach to estimate the stiffness coefficient of the cable and uses the system model to update the estimates of the external forces, which are then compensated in the control action. Given that the tethered cable force affects both horizontal channels of the quadrotor and is also coupled with the vertical channel, the proposed disturbance observer is constructed to exploit the redundant measurements across all three channels to jointly estimate the cable stiffness and the vertical disturbance. A pseudo-inverse method is used to determine the observer gain functions, such that the estimation of the two quantities is decoupled and stable. Compared to standard disturbance observers which assume nearly constant disturbances, the proposed approach can quickly adjust its total force estimate as the tethered quadrotor changes its position or tautness of the tether. This is applied to two experiments - a tracking performance test where the multicopter moves under a constant tether strain, and an object extraction test. In the second test, the multicopter manipulates a nonlinear mechanism mimicking the extraction of a wedged object. In both cases, the proposed approach shows significant improvement over standard Disturbance Observer and Extended State Observer approaches. A video summary of the experiments can be found at https://youtu.be/9gKr13WTj-k.
Motion Planning for Aerial Pick-and-Place based on Geometric Feasibility Constraints
Cao, Huazi, Shen, Jiahao, Liu, Cunjia, Zhu, Bo, Zhao, Shiyu
This paper studies the motion planning problem of the pick-and-place of an aerial manipulator that consists of a quadcopter flying base and a Delta arm. We propose a novel partially decoupled motion planning framework to solve this problem. Compared to the state-of-the-art approaches, the proposed one has two novel features. First, it does not suffer from increased computation in high-dimensional configuration spaces. That is because it calculates the trajectories of the quadcopter base and the end-effector separately in the Cartesian space based on proposed geometric feasibility constraints. The geometric feasibility constraints can ensure the resulting trajectories satisfy the aerial manipulator's geometry. Second, collision avoidance for the Delta arm is achieved through an iterative approach based on a pinhole mapping method, so that the feasible trajectory can be found in an efficient manner. The proposed approach is verified by three experiments on a real aerial manipulation platform. The experimental results show the effectiveness of the proposed method for the aerial pick-and-place task.
Structurally aware 3D gas distribution mapping using belief propagation: a real-time algorithm for robotic deployment
Rhodes, Callum, Liu, Cunjia, Chen, Wen-Hua
This paper proposes a new 3D gas distribution mapping technique based on the local message passing of Gaussian belief propagation that is capable of resolving in real time, concentration estimates in 3D space whilst accounting for the obstacle information within the scenario, the first of its kind in the literature. The gas mapping problem is formulated as a 3D factor graph of Gaussian potentials, the connections of which are conditioned on local occupancy values. The Gaussian belief propagation framework is introduced as the solver and a new hybrid message scheduler is introduced to increase the rate of convergence. The factor graph problem is then redesigned as a dynamically expanding inference task, coupling the information of consecutive gas measurements with local spatial structure obtained by the robot. The proposed algorithm is compared to the state of the art methods in 2D and 3D simulations and is found to resolve distribution maps orders of magnitude quicker than typical direct solvers. The proposed framework is then deployed for the first time onboard a ground robot in a 3D mapping and exploration task. The system is shown to be able to resolve multiple sensor inputs and output high resolution 3D gas distribution maps in a GPS denied cluttered scenario in real time. This online inference of complicated plume structures provides a new layer of contextual information over its 2D counterparts and enables autonomous systems to take advantage of real time estimates to inform potential next best sampling locations.
Potential Auto-driving Threat: Universal Rain-removal Attack
Hu, Jinchegn, Li, Jihao, Hou, Zhuoran, Jiang, Jingjing, Liu, Cunjia, Zhang, Yuanjian
The problem of robustness in adverse weather conditions is considered a significant challenge for computer vision algorithms in the applicants of autonomous driving. Image rain removal algorithms are a general solution to this problem. They find a deep connection between raindrops/rain-streaks and images by mining the hidden features and restoring information about the rain-free environment based on the powerful representation capabilities of neural networks. However, previous research has focused on architecture innovations and has yet to consider the vulnerability issues that already exist in neural networks. This research gap hints at a potential security threat geared toward the intelligent perception of autonomous driving in the rain. In this paper, we propose a universal rain-removal attack (URA) on the vulnerability of image rain-removal algorithms by generating a non-additive spatial perturbation that significantly reduces the similarity and image quality of scene restoration. Notably, this perturbation is difficult to recognise by humans and is also the same for different target images. Thus, URA could be considered a critical tool for the vulnerability detection of image rain-removal algorithms. It also could be developed as a real-world artificial intelligence attack method. Experimental results show that URA can reduce the scene repair capability by 39.5% and the image generation quality by 26.4%, targeting the state-of-the-art (SOTA) single-image rain-removal algorithms currently available.