Liu, Bowen
FFA Sora, video generation as fundus fluorescein angiography simulator
Wu, Xinyuan, Wang, Lili, Chen, Ruoyu, Liu, Bowen, Zhang, Weiyi, Yang, Xi, Feng, Yifan, He, Mingguang, Shi, Danli
Fundus fluorescein angiography (FFA) is critical for diagnosing retinal vascular diseases, but beginners often struggle with image interpretation. This study develops FFA Sora, a text-to-video model that converts FFA reports into dynamic videos via a Wavelet-Flow Variational Autoencoder (WF-VAE) and a diffusion transformer (DiT). Trained on an anonymized dataset, FFA Sora accurately simulates disease features from the input text, as confirmed by objective metrics: Frechet Video Distance (FVD) = 329.78, Learned Perceptual Image Patch Similarity (LPIPS) = 0.48, and Visual-question-answering Score (VQAScore) = 0.61. Specific evaluations showed acceptable alignment between the generated videos and textual prompts, with BERTScore of 0.35. Additionally, the model demonstrated strong privacy-preserving performance in retrieval evaluations, achieving an average Recall@K of 0.073. Human assessments indicated satisfactory visual quality, with an average score of 1.570(scale: 1 = best, 5 = worst). This model addresses privacy concerns associated with sharing large-scale FFA data and enhances medical education.
EyeDiff: text-to-image diffusion model improves rare eye disease diagnosis
Chen, Ruoyu, Zhang, Weiyi, Liu, Bowen, Chen, Xiaolan, Xu, Pusheng, Liu, Shunming, He, Mingguang, Shi, Danli
The rising prevalence of vision-threatening retinal diseases poses a significant burden on the global healthcare systems. Deep learning (DL) offers a promising solution for automatic disease screening but demands substantial data. Collecting and labeling large volumes of ophthalmic images across various modalities encounters several real-world challenges, especially for rare diseases. Here, we introduce EyeDiff, a text-to-image model designed to generate multimodal ophthalmic images from natural language prompts and evaluate its applicability in diagnosing common and rare diseases. EyeDiff is trained on eight large-scale datasets using the advanced latent diffusion model, covering 14 ophthalmic image modalities and over 80 ocular diseases, and is adapted to ten multi-country external datasets. The generated images accurately capture essential lesional characteristics, achieving high alignment with text prompts as evaluated by objective metrics and human experts. Furthermore, integrating generated images significantly enhances the accuracy of detecting minority classes and rare eye diseases, surpassing traditional oversampling methods in addressing data imbalance. EyeDiff effectively tackles the issue of data imbalance and insufficiency typically encountered in rare diseases and addresses the challenges of collecting large-scale annotated images, offering a transformative solution to enhance the development of expert-level diseases diagnosis models in ophthalmic field.
Subgraph Aggregation for Out-of-Distribution Generalization on Graphs
Liu, Bowen, Li, Haoyang, Wang, Shuning, Nie, Shuo, Zhang, Shanghang
Out-of-distribution (OOD) generalization in Graph Neural Networks (GNNs) has gained significant attention due to its critical importance in graph-based predictions in real-world scenarios. Existing methods primarily focus on extracting a single causal subgraph from the input graph to achieve generalizable predictions. However, relying on a single subgraph can lead to susceptibility to spurious correlations and is insufficient for learning invariant patterns behind graph data. Moreover, in many real-world applications, such as molecular property prediction, multiple critical subgraphs may influence the target label property. To address these challenges, we propose a novel framework, SubGraph Aggregation (SuGAr), designed to learn a diverse set of subgraphs that are crucial for OOD generalization on graphs. Specifically, SuGAr employs a tailored subgraph sampler and diversity regularizer to extract a diverse set of invariant subgraphs. These invariant subgraphs are then aggregated by averaging their representations, which enriches the subgraph signals and enhances coverage of the underlying causal structures, thereby improving OOD generalization. Extensive experiments on both synthetic and real-world datasets demonstrate that \ours outperforms state-of-the-art methods, achieving up to a 24% improvement in OOD generalization on graphs. To the best of our knowledge, this is the first work to study graph OOD generalization by learning multiple invariant subgraphs.
CTA-Net: A CNN-Transformer Aggregation Network for Improving Multi-Scale Feature Extraction
Meng, Chunlei, Yang, Jiacheng, Lin, Wei, Liu, Bowen, Zhang, Hongda, ouyang, chun, Gan, Zhongxue
Convolutional neural networks (CNNs) and vision transformers (ViTs) have become essential in computer vision for local and global feature extraction. However, aggregating these architectures in existing methods often results in inefficiencies. To address this, the CNN-Transformer Aggregation Network (CTA-Net) was developed. CTA-Net combines CNNs and ViTs, with transformers capturing long-range dependencies and CNNs extracting localized features. This integration enables efficient processing of detailed local and broader contextual information. CTA-Net introduces the Light Weight Multi-Scale Feature Fusion Multi-Head Self-Attention (LMF-MHSA) module for effective multi-scale feature integration with reduced parameters. Additionally, the Reverse Reconstruction CNN-Variants (RRCV) module enhances the embedding of CNNs within the transformer architecture. Extensive experiments on small-scale datasets with fewer than 100,000 samples show that CTA-Net achieves superior performance (TOP-1 Acc 86.76\%), fewer parameters (20.32M), and greater efficiency (FLOPs 2.83B), making it a highly efficient and lightweight solution for visual tasks on small-scale datasets (fewer than 100,000).
Edge Unlearning is Not "on Edge"! An Adaptive Exact Unlearning System on Resource-Constrained Devices
Xia, Xiaoyu, Wang, Ziqi, Sun, Ruoxi, Liu, Bowen, Khalil, Ibrahim, Xue, Minhui
The right to be forgotten mandates that machine learning models enable the erasure of a data owner's data and information from a trained model. Removing data from the dataset alone is inadequate, as machine learning models can memorize information from the training data, increasing the potential privacy risk to users. To address this, multiple machine unlearning techniques have been developed and deployed. Among them, approximate unlearning is a popular solution, but recent studies report that its unlearning effectiveness is not fully guaranteed. Another approach, exact unlearning, tackles this issue by discarding the data and retraining the model from scratch, but at the cost of considerable computational and memory resources. However, not all devices have the capability to perform such retraining. In numerous machine learning applications, such as edge devices, Internet-of-Things (IoT), mobile devices, and satellites, resources are constrained, posing challenges for deploying existing exact unlearning methods. In this study, we propose a Constraint-aware Adaptive Exact Unlearning System at the network Edge (CAUSE), an approach to enabling exact unlearning on resource-constrained devices. Aiming to minimize the retrain overhead by storing sub-models on the resource-constrained device, CAUSE innovatively applies a Fibonacci-based replacement strategy and updates the number of shards adaptively in the user-based data partition process. To further improve the effectiveness of memory usage, CAUSE leverages the advantage of model pruning to save memory via compression with minimal accuracy sacrifice. The experimental results demonstrate that CAUSE significantly outperforms other representative systems in realizing exact unlearning on the resource-constrained device by 9.23%-80.86%, 66.21%-83.46%, and 5.26%-194.13% in terms of unlearning speed, energy consumption, and accuracy.
VisionCLIP: An Med-AIGC based Ethical Language-Image Foundation Model for Generalizable Retina Image Analysis
Wei, Hao, Liu, Bowen, Zhang, Minqing, Shi, Peilun, Yuan, Wu
Generalist foundation model has ushered in newfound capabilities in medical domain. However, the contradiction between the growing demand for high-quality annotated data with patient privacy continues to intensify. The utilization of medical artificial intelligence generated content (Med-AIGC) as an inexhaustible resource repository arises as a potential solution to address the aforementioned challenge. Here we harness 1 million open-source synthetic fundus images paired with natural language descriptions, to curate an ethical language-image foundation model for retina image analysis named VisionCLIP. VisionCLIP achieves competitive performance on three external datasets compared with the existing method pre-trained on real-world data in a zero-shot fashion. The employment of artificially synthetic images alongside corresponding textual data for training enables the medical foundation model to successfully assimilate knowledge of disease symptomatology, thereby circumventing potential breaches of patient confidentiality.
Quantum-Inspired Machine Learning for Molecular Docking
Shu, Runqiu, Liu, Bowen, Xiong, Zhaoping, Cui, Xiaopeng, Li, Yunting, Cui, Wei, Yung, Man-Hong, Qiao, Nan
Molecular docking is an important tool for structure-based drug design, accelerating the efficiency of drug development. Complex and dynamic binding processes between proteins and small molecules require searching and sampling over a wide spatial range. Traditional docking by searching for possible binding sites and conformations is computationally complex and results poorly under blind docking. Quantum-inspired algorithms combining quantum properties and annealing show great advantages in solving combinatorial optimization problems. Inspired by this, we achieve an improved in blind docking by using quantum-inspired combined with gradients learned by deep learning in the encoded molecular space. Numerical simulation shows that our method outperforms traditional docking algorithms and deep learning-based algorithms over 10\%. Compared to the current state-of-the-art deep learning-based docking algorithm DiffDock, the success rate of Top-1 (RMSD<2) achieves an improvement from 33\% to 35\% in our same setup. In particular, a 6\% improvement is realized in the high-precision region(RMSD<1) on molecules data unseen in DiffDock, which demonstrates the well-generalized of our method.
TrTr: A Versatile Pre-Trained Large Traffic Model based on Transformer for Capturing Trajectory Diversity in Vehicle Population
Feng, Ruyi, Li, Zhibin, Liu, Bowen, Ding, Yan
Understanding trajectory diversity is a fundamental aspect of addressing practical traffic tasks. However, capturing the diversity of trajectories presents challenges, particularly with traditional machine learning and recurrent neural networks due to the requirement of large-scale parameters. The emerging Transformer technology, renowned for its parallel computation capabilities enabling the utilization of models with hundreds of millions of parameters, offers a promising solution. In this study, we apply the Transformer architecture to traffic tasks, aiming to learn the diversity of trajectories within vehicle populations. We analyze the Transformer's attention mechanism and its adaptability to the goals of traffic tasks, and subsequently, design specific pre-training tasks. To achieve this, we create a data structure tailored to the attention mechanism and introduce a set of noises that correspond to spatio-temporal demands, which are incorporated into the structured data during the pre-training process. The designed pre-training model demonstrates excellent performance in capturing the spatial distribution of the vehicle population, with no instances of vehicle overlap and an RMSE of 0.6059 when compared to the ground truth values. In the context of time series prediction, approximately 95% of the predicted trajectories' speeds closely align with the true speeds, within a deviation of 7.5144m/s. Furthermore, in the stability test, the model exhibits robustness by continuously predicting a time series ten times longer than the input sequence, delivering smooth trajectories and showcasing diverse driving behaviors. The pre-trained model also provides a good basis for downstream fine-tuning tasks. The number of parameters of our model is over 50 million.
Capture Uncertainties in Deep Neural Networks for Safe Operation of Autonomous Driving Vehicles
Ding, Liuhui, Li, Dachuan, Liu, Bowen, Lan, Wenxing, Bai, Bing, Hao, Qi, Cao, Weipeng, Pei, Ke
Uncertainties in Deep Neural Network (DNN)-based perception and vehicle's motion pose challenges to the development of safe autonomous driving vehicles. In this paper, we propose a safe motion planning framework featuring the quantification and propagation of DNN-based perception uncertainties and motion uncertainties. Contributions of this work are twofold: (1) A Bayesian Deep Neural network model which detects 3D objects and quantitatively captures the associated aleatoric and epistemic uncertainties of DNNs; (2) An uncertainty-aware motion planning algorithm (PU-RRT) that accounts for uncertainties in object detection and ego-vehicle's motion. The proposed approaches are validated via simulated complex scenarios built in CARLA. Experimental results show that the proposed motion planning scheme can cope with uncertainties of DNN-based perception and vehicle motion, and improve the operational safety of autonomous vehicles while still achieving desirable efficiency.
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Hu, Weihua, Fey, Matthias, Zitnik, Marinka, Dong, Yuxiao, Ren, Hongyu, Liu, Bowen, Catasta, Michele, Leskovec, Jure
We present the Open Graph Benchmark (OGB), a diverse set of challenging and realistic benchmark datasets to facilitate scalable, robust, and reproducible graph machine learning (ML) research. OGB datasets are large-scale, encompass multiple important graph ML tasks, and cover a diverse range of domains, ranging from social and information networks to biological networks, molecular graphs, source code ASTs, and knowledge graphs. For each dataset, we provide a unified evaluation protocol using meaningful application-specific data splits and evaluation metrics. In addition to building the datasets, we also perform extensive benchmark experiments for each dataset. Our experiments suggest that OGB datasets present significant challenges of scalability to large-scale graphs and out-of-distribution generalization under realistic data splits, indicating fruitful opportunities for future research. Finally, OGB provides an automated end-to-end graph ML pipeline that simplifies and standardizes the process of graph data loading, experimental setup, and model evaluation. OGB will be regularly updated and welcomes inputs from the community. OGB datasets as well as data loaders, evaluation scripts, baseline code, and leaderboards are publicly available at https://ogb.stanford.edu .