Goto

Collaborating Authors

 Liu, An


TAPE: Tailored Posterior Difference for Auditing of Machine Unlearning

arXiv.org Artificial Intelligence

With the increasing prevalence of Web-based platforms handling vast amounts of user data, machine unlearning has emerged as a crucial mechanism to uphold users' right to be forgotten, enabling individuals to request the removal of their specified data from trained models. However, the auditing of machine unlearning processes remains significantly underexplored. Although some existing methods offer unlearning auditing by leveraging backdoors, these backdoor-based approaches are inefficient and impractical, as they necessitate involvement in the initial model training process to embed the backdoors. In this paper, we propose a TAilored Posterior diffErence (TAPE) method to provide unlearning auditing independently of original model training. We observe that the process of machine unlearning inherently introduces changes in the model, which contains information related to the erased data. TAPE leverages unlearning model differences to assess how much information has been removed through the unlearning operation. Firstly, TAPE mimics the unlearned posterior differences by quickly building unlearned shadow models based on first-order influence estimation. Secondly, we train a Reconstructor model to extract and evaluate the private information of the unlearned posterior differences to audit unlearning. Existing privacy reconstructing methods based on posterior differences are only feasible for model updates of a single sample. To enable the reconstruction effective for multi-sample unlearning requests, we propose two strategies, unlearned data perturbation and unlearned influence-based division, to augment the posterior difference. Extensive experimental results indicate the significant superiority of TAPE over the state-of-the-art unlearning verification methods, at least 4.5$\times$ efficiency speedup and supporting the auditing for broader unlearning scenarios.


Context-aware Constrained Reinforcement Learning Based Energy-Efficient Power Scheduling for Non-stationary XR Data Traffic

arXiv.org Artificial Intelligence

In XR downlink transmission, energy-efficient power scheduling (EEPS) is essential for conserving power resource while delivering large data packets within hard-latency constraints. Traditional constrained reinforcement learning (CRL) algorithms show promise in EEPS but still struggle with non-convex stochastic constraints, non-stationary data traffic, and sparse delayed packet dropout feedback (rewards) in XR. To overcome these challenges, this paper models the EEPS in XR as a dynamic parameter-constrained Markov decision process (DP-CMDP) with a varying transition function linked to the non-stationary data traffic and solves it by a proposed context-aware constrained reinforcement learning (CACRL) algorithm, which consists of a context inference (CI) module and a CRL module. The CI module trains an encoder and multiple potential networks to characterize the current transition function and reshape the packet dropout rewards according to the context, transforming the original DP-CMDP into a general CMDP with immediate dense rewards. The CRL module employs a policy network to make EEPS decisions under this CMDP and optimizes the policy using a constrained stochastic successive convex approximation (CSSCA) method, which is better suited for non-convex stochastic constraints. Finally, theoretical analyses provide deep insights into the CADAC algorithm, while extensive simulations demonstrate that it outperforms advanced baselines in both power conservation and satisfying packet dropout constraints.


Can Self Supervision Rejuvenate Similarity-Based Link Prediction?

arXiv.org Artificial Intelligence

Although recent advancements in end-to-end learning-based link prediction (LP) methods have shown remarkable capabilities, the significance of traditional similarity-based LP methods persists in unsupervised scenarios where there are no known link labels. However, the selection of node features for similarity computation in similarity-based LP can be challenging. Less informative node features can result in suboptimal LP performance. To address these challenges, we integrate self-supervised graph learning techniques into similarity-based LP and propose a novel method: Self-Supervised Similarity-based LP (3SLP). 3SLP is suitable for the unsupervised condition of similarity-based LP without the assistance of known link labels. Specifically, 3SLP introduces a dual-view contrastive node representation learning (DCNRL) with crafted data augmentation and node representation learning. DCNRL is dedicated to developing more informative node representations, replacing the node attributes as inputs in the similarity-based LP backbone. Extensive experiments over benchmark datasets demonstrate the salient improvement of 3SLP, outperforming the baseline of traditional similarity-based LP by up to 21.2% (AUC).


LEGENT: Open Platform for Embodied Agents

arXiv.org Artificial Intelligence

Despite advancements in Large Language Models (LLMs) and Large Multimodal Models (LMMs), their integration into language-grounded, human-like embodied agents remains incomplete, hindering complex real-life task performance in physical environments. Existing integrations often feature limited open sourcing, challenging collective progress in this field. We introduce LEGENT, an open, scalable platform for developing embodied agents using LLMs and LMMs. LEGENT offers a dual approach: a rich, interactive 3D environment with communicable and actionable agents, paired with a user-friendly interface, and a sophisticated data generation pipeline utilizing advanced algorithms to exploit supervision from simulated worlds at scale. In our experiments, an embryonic vision-language-action model trained on LEGENT-generated data surpasses GPT-4V in embodied tasks, showcasing promising generalization capabilities.


Towards Unified Alignment Between Agents, Humans, and Environment

arXiv.org Artificial Intelligence

The rapid progress of foundation models has led to the prosperity of autonomous agents, which leverage the universal capabilities of foundation models to conduct reasoning, decision-making, and environmental interaction. However, the efficacy of agents remains limited when operating in intricate, realistic environments. In this work, we introduce the principles of $\mathbf{U}$nified $\mathbf{A}$lignment for $\mathbf{A}$gents ($\mathbf{UA}^2$), which advocate for the simultaneous alignment of agents with human intentions, environmental dynamics, and self-constraints such as the limitation of monetary budgets. From the perspective of $\mathbf{UA}^2$, we review the current agent research and highlight the neglected factors in existing agent benchmarks and method candidates. We also conduct proof-of-concept studies by introducing realistic features to WebShop, including user profiles to demonstrate intentions, personalized reranking for complex environmental dynamics, and runtime cost statistics to reflect self-constraints. We then follow the principles of $\mathbf{UA}^2$ to propose an initial design of our agent, and benchmark its performance with several candidate baselines in the retrofitted WebShop. The extensive experimental results further prove the importance of the principles of $\mathbf{UA}^2$. Our research sheds light on the next steps of autonomous agent research with improved general problem-solving abilities.


Bayesian Federated Learning Via Expectation Maximization and Turbo Deep Approximate Message Passing

arXiv.org Artificial Intelligence

Federated learning (FL) is a machine learning paradigm where the clients possess decentralized training data and the central server handles aggregation and scheduling. Typically, FL algorithms involve clients training their local models using stochastic gradient descent (SGD), which carries drawbacks such as slow convergence and being prone to getting stuck in suboptimal solutions. In this work, we propose a message passing based Bayesian federated learning (BFL) framework to avoid these drawbacks.Specifically, we formulate the problem of deep neural network (DNN) learning and compression and as a sparse Bayesian inference problem, in which group sparse prior is employed to achieve structured model compression. Then, we propose an efficient BFL algorithm called EMTDAMP, where expectation maximization (EM) and turbo deep approximate message passing (TDAMP) are combined to achieve distributed learning and compression. The central server aggregates local posterior distributions to update global posterior distributions and update hyperparameters based on EM to accelerate convergence. The clients perform TDAMP to achieve efficient approximate message passing over DNN with joint prior distribution. We detail the application of EMTDAMP to Boston housing price prediction and handwriting recognition, and present extensive numerical results to demonstrate the advantages of EMTDAMP.


Improving the Robustness of Knowledge-Grounded Dialogue via Contrastive Learning

arXiv.org Artificial Intelligence

Knowledge-grounded dialogue (KGD) learns to generate an informative response based on a given dialogue context and external knowledge (\emph{e.g.}, knowledge graphs; KGs). Recently, the emergence of large language models (LLMs) and pre-training techniques has brought great success to knowledge-grounded dialogue. However, when building KGD systems in real applications, there are various real-world noises that are inevitable to face. For example, the dialogue context might involve perturbations such as misspellings and abbreviations. In addition, KGs typically suffer from incompletion and also might contain erroneous and outdated facts. Such real-world noises pose a challenge to the robustness of KGD systems and hinder their applications in the real world. In this paper, we propose an entity-based contrastive learning framework for improving the robustness of KGD. Specifically, we make use of the entity information in a KGD sample to create both its positive and negative samples which involve semantic-irrelevant and semantic-relevant perturbations, respectively. The contrastive learning framework ensures the KGD model is aware of these two types of perturbations, thus generating informative responses with the potentially noisy inputs in real applications. Experimental results on three benchmark datasets show that our method achieves new state-of-the-art performance in terms of automatic evaluation scores, verifying its effectiveness and potentiality. Furthermore, we show that our method can generate better responses than comparison models in both the noisy and the few-shot settings.


Snowman: A Million-scale Chinese Commonsense Knowledge Graph Distilled from Foundation Model

arXiv.org Artificial Intelligence

Constructing commonsense knowledge graphs (CKGs) has attracted wide research attention due to its significant importance in cognitive intelligence. Nevertheless, existing CKGs are typically oriented to English, limiting the research in non-English languages. Meanwhile, the emergence of foundation models like ChatGPT and GPT-4 has shown promising intelligence with the help of reinforcement learning from human feedback. Under the background, in this paper, we utilize foundation models to construct a Chinese CKG, named Snowman. Specifically, we distill different types of commonsense head items from ChatGPT, and continue to use it to collect tail items with respect to the head items and pre-defined relations. Based on the preliminary analysis, we find the negative commonsense knowledge distilled by ChatGPT achieves lower human acceptance compared to other knowledge. Therefore, we design a simple yet effective self-instruct filtering strategy to filter out invalid negative commonsense. Overall, the constructed Snowman covers more than ten million Chinese commonsense triples, making it the largest Chinese CKG. Moreover, human studies show the acceptance of Snowman achieves 90.6\%, indicating the high-quality triples distilled by the cutting-edge foundation model. We also conduct experiments on commonsense knowledge models to show the usability and effectiveness of our Snowman.


A Single-Loop Deep Actor-Critic Algorithm for Constrained Reinforcement Learning with Provable Convergence

arXiv.org Artificial Intelligence

Abstract -- Deep Actor-Critic algorithms, which combine Actor-Critic with deep neural network (DNN), have been among the most prevalent reinforcement learning algorithms for decision-making problems in simulated environments. However, the existing deep Actor-Critic algorithms are still not mature to solve realistic problems with non-convex stochastic constraints and high cost to interact with the environment. In this paper, we propose a single-loop deep Actor-Critic (SLDAC) algorithmic framework for general constrained reinforcement learning (CRL) problems. In the actor step, the constrained stochastic successive convex approximation (CSSCA) method is applied to handle the non-convex stochastic objective and constraints. In the critic step, the critic DNNs are only updated once or a few finite times for each iteration, which simplifies the algorithm to a single-loop framework (the existing works require a sufficient number of updates for the critic step to ensure a good enough convergence of the inner loop for each iteration). Moreover, the variance of the policy gradient estimation is reduced by reusing observations from the old policy. The single-loop design and the observation reuse effectively reduce the agent-environment interaction cost and computational complexity. In spite of the biased policy gradient estimation incurred by the single-loop design and observation reuse, we prove that the SLDAC with a feasible initial point can converge to a Karush-Kuhn-Tuker (KKT) point of the original problem almost surely. Simulations show that the SLDAC algorithm can achieve superior performance with much lower interaction cost.


Long-Document Cross-Lingual Summarization

arXiv.org Artificial Intelligence

Cross-Lingual Summarization (CLS) aims at generating summaries in one language for the given documents in another language. CLS has attracted wide research attention due to its practical significance in the multi-lingual world. Though great contributions have been made, existing CLS works typically focus on short documents, such as news articles, short dialogues and guides. Different from these short texts, long documents such as academic articles and business reports usually discuss complicated subjects and consist of thousands of words, making them non-trivial to process and summarize. To promote CLS research on long documents, we construct Perseus, the first long-document CLS dataset which collects about 94K Chinese scientific documents paired with English summaries. The average length of documents in Perseus is more than two thousand tokens. As a preliminary study on long-document CLS, we build and evaluate various CLS baselines, including pipeline and end-to-end methods. Experimental results on Perseus show the superiority of the end-to-end baseline, outperforming the strong pipeline models equipped with sophisticated machine translation systems. Furthermore, to provide a deeper understanding, we manually analyze the model outputs and discuss specific challenges faced by current approaches. We hope that our work could benchmark long-document CLS and benefit future studies.