Goto

Collaborating Authors

 Lirong Xia


A Mathematical Model For Optimal Decisions In A Representative Democracy

Neural Information Processing Systems

Direct democracy, where each voter casts one vote, fails when the average voter competence falls below 50%. This happens in noisy settings when voters have limited information. Representative democracy, where voters choose representatives to vote, can be an elixir in both these situations. We introduce a mathematical model for studying representative democracy, in particular understanding the parameters of a representative democracy that gives maximum decision making capability. Our main result states that under general and natural conditions, 1. for fixed voting cost, the optimal number of representatives is linear; 2. for polynomial cost, the optimal number of representatives is logarithmic.




Learning Mixtures of Plackett-Luce Models from Structured Partial Orders

Neural Information Processing Systems

Mixtures of ranking models have been widely used for heterogeneous preferences. However, learning a mixture model is highly nontrivial, especially when the dataset consists of partial orders. In such cases, the parameter of the model may not be even identifiable.