Lipton, Zachary
Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions
Shen, Hua, Knearem, Tiffany, Ghosh, Reshmi, Alkiek, Kenan, Krishna, Kundan, Liu, Yachuan, Ma, Ziqiao, Petridis, Savvas, Peng, Yi-Hao, Qiwei, Li, Rakshit, Sushrita, Si, Chenglei, Xie, Yutong, Bigham, Jeffrey P., Bentley, Frank, Chai, Joyce, Lipton, Zachary, Mei, Qiaozhu, Mihalcea, Rada, Terry, Michael, Yang, Diyi, Morris, Meredith Ringel, Resnick, Paul, Jurgens, David
Recent advancements in general-purpose AI have highlighted the importance of guiding AI systems towards the intended goals, ethical principles, and values of individuals and groups, a concept broadly recognized as alignment. However, the lack of clarified definitions and scopes of human-AI alignment poses a significant obstacle, hampering collaborative efforts across research domains to achieve this alignment. In particular, ML- and philosophy-oriented alignment research often views AI alignment as a static, unidirectional process (i.e., aiming to ensure that AI systems' objectives match humans) rather than an ongoing, mutual alignment problem [429]. This perspective largely neglects the long-term interaction and dynamic changes of alignment. To understand these gaps, we introduce a systematic review of over 400 papers published between 2019 and January 2024, spanning multiple domains such as Human-Computer Interaction (HCI), Natural Language Processing (NLP), Machine Learning (ML), and others. We characterize, define and scope human-AI alignment. From this, we present a conceptual framework of "Bidirectional Human-AI Alignment" to organize the literature from a human-centered perspective. This framework encompasses both 1) conventional studies of aligning AI to humans that ensures AI produces the intended outcomes determined by humans, and 2) a proposed concept of aligning humans to AI, which aims to help individuals and society adjust to AI advancements both cognitively and behaviorally. Additionally, we articulate the key findings derived from literature analysis, including discussions about human values, interaction techniques, and evaluations. To pave the way for future studies, we envision three key challenges for future directions and propose examples of potential future solutions.
Discovering Optimal Scoring Mechanisms in Causal Strategic Prediction
Yan, Tom, Gupta, Shantanu, Lipton, Zachary
Faced with data-driven policies, individuals will manipulate their features to obtain favorable decisions. While earlier works cast these manipulations as undesirable gaming, recent works have adopted a more nuanced causal framing in which manipulations can improve outcomes of interest, and setting coherent mechanisms requires accounting for both predictive accuracy and improvement of the outcome. Typically, these works focus on known causal graphs, consisting only of an outcome and its parents. In this paper, we introduce a general framework in which an outcome and n observed features are related by an arbitrary unknown graph and manipulations are restricted by a fixed budget and cost structure. We develop algorithms that leverage strategic responses to discover the causal graph in a finite number of steps. Given this graph structure, we can then derive mechanisms that trade off between accuracy and improvement. Altogether, our work deepens links between causal discovery and incentive design and provides a more nuanced view of learning under causal strategic prediction.
The Impact of Algorithmic Risk Assessments on Human Predictions and its Analysis via Crowdsourcing Studies
Fogliato, Riccardo, Chouldechova, Alexandra, Lipton, Zachary
As algorithmic risk assessment instruments (RAIs) are increasingly adopted to assist decision makers, their predictive performance and potential to promote inequity have come under scrutiny. However, while most studies examine these tools in isolation, researchers have come to recognize that assessing their impact requires understanding the behavior of their human interactants. In this paper, building off of several recent crowdsourcing works focused on criminal justice, we conduct a vignette study in which laypersons are tasked with predicting future re-arrests. Our key findings are as follows: (1) Participants often predict that an offender will be rearrested even when they deem the likelihood of re-arrest to be well below 50%; (2) Participants do not anchor on the RAI's predictions; (3) The time spent on the survey varies widely across participants and most cases are assessed in less than 10 seconds; (4) Judicial decisions, unlike participants' predictions, depend in part on factors that are orthogonal to the likelihood of re-arrest. These results highlight the influence of several crucial but often overlooked design decisions and concerns around generalizability when constructing crowdsourcing studies to analyze the impacts of RAIs.
Domain Adaptation with Asymmetrically-Relaxed Distribution Alignment
Wu, Yifan, Winston, Ezra, Kaushik, Divyansh, Lipton, Zachary
Domain adaptation addresses the common problem when the target distribution generating our test data drifts from the source (training) distribution. While absent assumptions, domain adaptation is impossible, strict conditions, e.g. covariate or label shift, enable principled algorithms. Recently-proposed domain-adversarial approaches consist of aligning source and target encodings, often motivating this approach as minimizing two (of three) terms in a theoretical bound on target error. Unfortunately, this minimization can cause arbitrary increases in the third term, e.g. they can break down under shifting label distributions. We propose asymmetrically-relaxed distribution alignment, a new approach that overcomes some limitations of standard domain-adversarial algorithms. Moreover, we characterize precise assumptions under which our algorithm is theoretically principled and demonstrate empirical benefits on both synthetic and real datasets.
Does mitigating ML's impact disparity require treatment disparity?
Lipton, Zachary, McAuley, Julian, Chouldechova, Alexandra
Following precedent in employment discrimination law, two notions of disparity are widely-discussed in papers on fairness and ML. Algorithms exhibit treatment disparity if they formally treat members of protected subgroups differently; algorithms exhibit impact disparity when outcomes differ across subgroups (even unintentionally). Naturally, we can achieve impact parity through purposeful treatment disparity. One line of papers aims to reconcile the two parities proposing disparate learning processes (DLPs). Here, the sensitive feature is used during training but a group-blind classifier is produced. In this paper, we show that: (i) when sensitive and (nominally) nonsensitive features are correlated, DLPs will indirectly implement treatment disparity, undermining the policy desiderata they are designed to address; (ii) when group membership is partly revealed by other features, DLPs induce within-class discrimination; and (iii) in general, DLPs provide suboptimal trade-offs between accuracy and impact parity. Experimental results on several real-world datasets highlight the practical consequences of applying DLPs.
Does mitigating ML's impact disparity require treatment disparity?
Lipton, Zachary, McAuley, Julian, Chouldechova, Alexandra
Following precedent in employment discrimination law, two notions of disparity are widely-discussed in papers on fairness and ML. Algorithms exhibit treatment disparity if they formally treat members of protected subgroups differently; algorithms exhibit impact disparity when outcomes differ across subgroups (even unintentionally). Naturally, we can achieve impact parity through purposeful treatment disparity. One line of papers aims to reconcile the two parities proposing disparate learning processes (DLPs). Here, the sensitive feature is used during training but a group-blind classifier is produced. In this paper, we show that: (i) when sensitive and (nominally) nonsensitive features are correlated, DLPs will indirectly implement treatment disparity, undermining the policy desiderata they are designed to address; (ii) when group membership is partly revealed by other features, DLPs induce within-class discrimination; and (iii) in general, DLPs provide suboptimal trade-offs between accuracy and impact parity. Experimental results on several real-world datasets highlight the practical consequences of applying DLPs.
BBQ-Networks: Efficient Exploration in Deep Reinforcement Learning for Task-Oriented Dialogue Systems
Lipton, Zachary (Carnegie Mellon University) | Li, Xiujun (Microsoft Research Redmond) | Gao, Jianfeng (Microsoft Research Redmond) | Li, Lihong (Google Inc.) | Ahmed, Faisal (Microsoft Research Redmond) | Deng, Li (Citadel)
We present a new algorithm that significantly improves the efficiency of exploration for deep Q-learning agents in dialogue systems. Our agents explore via Thompson sampling, drawing Monte Carlo samples from a Bayes-by-Backprop neural network. Our algorithm learns much faster than common exploration strategies such as ε-greedy, Boltzmann, bootstrapping, and intrinsic-reward-based ones. Additionally, we show that spiking the replay buffer with experiences from just a few successful episodes can make Q-learning feasible when it might otherwise fail.