Goto

Collaborating Authors

 Lipani, Aldo


Instruction Tuning With Loss Over Instructions

arXiv.org Artificial Intelligence

Instruction tuning plays a crucial role in shaping the outputs of language models (LMs) to desired styles. In this work, we propose a simple yet effective method, Instruction Modelling (IM), which trains LMs by applying a loss function to the instruction and prompt part rather than solely to the output part. Through experiments across 21 diverse benchmarks, we show that, in many scenarios, IM can effectively improve the LM performance on both NLP tasks (e.g., MMLU, TruthfulQA, and HumanEval) and open-ended generation benchmarks (e.g., MT-Bench and AlpacaEval). Remarkably, in the most advantageous case, IM boosts model performance on AlpacaEval 1.0 by over 100%. We identify two key factors influencing the effectiveness of IM: (1) The ratio between instruction length and output length in the training data; and (2) The number of training examples. We observe that IM is especially beneficial when trained on datasets with lengthy instructions paired with brief outputs, or under the Superficial Alignment Hypothesis (SAH) where a small amount of training examples are used for instruction tuning. Further analysis substantiates our hypothesis that the improvement can be attributed to reduced overfitting to instruction tuning datasets. Our work provides practical guidance for instruction tuning LMs, especially in low-resource scenarios.


Do Sentence Transformers Learn Quasi-Geospatial Concepts from General Text?

arXiv.org Artificial Intelligence

Sentence transformers are language models designed to perform semantic search. This study investigates the capacity of sentence transformers, fine-tuned on general question-answering datasets for asymmetric semantic search, to associate descriptions of human-generated routes across Great Britain with queries often used to describe hiking experiences. We find that sentence transformers have some zero-shot capabilities to understand quasi-geospatial concepts, such as route types and difficulty, suggesting their potential utility for routing recommendation systems.


DePT: Decomposed Prompt Tuning for Parameter-Efficient Fine-tuning

arXiv.org Artificial Intelligence

Prompt tuning (PT), where a small amount of trainable soft (continuous) prompt vectors is affixed to the input of language models (LM), has shown promising results across various tasks and models for parameter-efficient fine-tuning (PEFT). PT stands out from other PEFT approaches because it maintains competitive performance with fewer trainable parameters and does not drastically scale up its parameters as the model size expands. However, PT introduces additional soft prompt tokens, leading to longer input sequences, which significantly impacts training and inference time and memory usage due to the Transformer's quadratic complexity. Particularly concerning for Large Language Models (LLMs) that face heavy daily querying. To address this issue, we propose Decomposed Prompt Tuning (DePT), which decomposes the soft prompt into a shorter soft prompt and a pair of low-rank matrices that are then optimised with two different learning rates. This allows DePT to achieve better performance while saving substantial memory and time costs compared to vanilla PT and its variants, without changing trainable parameter sizes. Through extensive experiments on 23 natural language processing (NLP) and vision-language (VL) tasks, we demonstrate that DePT outperforms state-of-the-art PEFT approaches, including the full fine-tuning baseline, in some scenarios. Additionally, we empirically show that DEPT grows more efficient as the model size increases. Our further study reveals that DePT integrates seamlessly with parameter-efficient transfer learning in the few-shot learning setting and highlights its adaptability to various model architectures and sizes.


Self Contrastive Learning for Session-based Recommendation

arXiv.org Artificial Intelligence

Session-based recommendation, which aims to predict the next item of users' interest as per an existing sequence interaction of items, has attracted growing applications of Contrastive Learning (CL) with improved user and item representations. However, these contrastive objectives: (1) serve a similar role as the cross-entropy loss while ignoring the item representation space optimisation; and (2) commonly require complicated modelling, including complex positive/negative sample constructions and extra data augmentation. In this work, we introduce Self-Contrastive Learning (SCL), which simplifies the application of CL and enhances the performance of state-of-the-art CL-based recommendation techniques. Specifically, SCL is formulated as an objective function that directly promotes a uniform distribution among item representations and efficiently replaces all the existing contrastive objective components of state-of-the-art models. Unlike previous works, SCL eliminates the need for any positive/negative sample construction or data augmentation, leading to enhanced interpretability of the item representation space and facilitating its extensibility to existing recommender systems. Through experiments on three benchmark datasets, we demonstrate that SCL consistently improves the performance of state-of-the-art models with statistical significance. Notably, our experiments show that SCL improves the performance of two best-performing models by 8.2% and 9.5% in P@10 (Precision) and 9.9% and 11.2% in MRR@10 (Mean Reciprocal Rank) on average across different benchmarks. Additionally, our analysis elucidates the improvement in terms of alignment and uniformity of representations, as well as the effectiveness of SCL with a low computational cost.


Unlocking the Potential of User Feedback: Leveraging Large Language Model as User Simulator to Enhance Dialogue System

arXiv.org Artificial Intelligence

Dialogue systems and large language models (LLMs) have gained considerable attention. However, the direct utilization of LLMs as task-oriented dialogue (TOD) models has been found to underperform compared to smaller task-specific models. Nonetheless, it is crucial to acknowledge the significant potential of LLMs and explore improved approaches for leveraging their impressive abilities. Motivated by the goal of leveraging LLMs, we propose an alternative approach called User-Guided Response Optimization (UGRO) to combine it with a smaller TOD model. This approach uses LLM as annotation-free user simulator to assess dialogue responses, combining them with smaller fine-tuned end-to-end TOD models. By utilizing the satisfaction feedback generated by LLMs, UGRO further optimizes the supervised fine-tuned TOD model. Specifically, the TOD model takes the dialogue history as input and, with the assistance of the user simulator's feedback, generates high-satisfaction responses that meet the user's requirements. Through empirical experiments on two TOD benchmarks, we validate the effectiveness of our method. The results demonstrate that our approach outperforms previous state-of-the-art (SOTA) results.


Lexical Entrainment for Conversational Systems

arXiv.org Artificial Intelligence

Conversational agents have become ubiquitous in assisting with daily tasks, and are expected to possess human-like features. One such feature is lexical entrainment (LE), a phenomenon in which speakers in human-human conversations tend to naturally and subconsciously align their lexical choices with those of their interlocutors, leading to more successful and engaging conversations. As an example, if a digital assistant replies 'Your appointment for Jinling Noodle Pub is at 7 pm' to the question 'When is my reservation for Jinling Noodle Bar today?', it may feel as though the assistant is trying to correct the speaker, whereas a response of 'Your reservation for Jinling Noodle Bar is at 7 pm' would likely be perceived as more positive. This highlights the importance of LE in establishing a shared terminology for maximum clarity and reducing ambiguity in conversations. However, we demonstrate in this work that current response generation models do not adequately address this crucial humanlike phenomenon. To address this, we propose a new dataset, named MULTIWOZ-ENTR, and a measure for LE for conversational systems. Additionally, we suggest a way to explicitly integrate LE into conversational systems with two new tasks, a LE extraction task and a LE generation task. We also present two baseline approaches for the LE extraction task, which aim to detect LE expressions from dialogue contexts.


Don't Stop Pretraining? Make Prompt-based Fine-tuning Powerful Learner

arXiv.org Artificial Intelligence

Language models (LMs) trained on vast quantities of unlabelled data have greatly advanced the field of natural language processing (NLP). In this study, we re-visit the widely accepted notion in NLP that continued pre-training LMs on task-related texts improves the performance of fine-tuning (FT) in downstream tasks. Through experiments on eight single-sentence tasks and eight sentence-pair tasks in both semi-supervised and fully-supervised settings, we find that conventional continued pre-training does not consistently provide benefits and can even be detrimental for sentence-pair tasks or when prompt-based FT is used. To tackle these issues, we propose Prompt-based Continued Pre-training (PCP), which combines the idea of instruction tuning with conventional continued pre-training. Our approach aims to improve the performance of prompt-based FT by presenting both task-related texts and prompt templates to LMs through unsupervised pre-training objectives before fine-tuning for the target task. Our empirical evaluations on 21 benchmarks demonstrate that the PCP consistently improves the performance of state-of-the-art prompt-based FT approaches (up to 20.1% absolute) in both semi-supervised and fully-supervised settings, even with only hundreds of unlabelled examples. Additionally, prompt-based FT with the PCP outperforms state-of-the-art semi-supervised approaches with greater simplicity, eliminating the need for an iterative process and extra data augmentation. Our further analysis explores the performance lower bound of the PCP and reveals that the advantages of PCP persist across different sizes of models and datasets.


Application of Zone Method based Machine Learning and Physics-Informed Neural Networks in Reheating Furnaces

arXiv.org Artificial Intelligence

Despite the high economic relevance of Foundation Industries, certain components like Reheating furnaces within their manufacturing chain are energy-intensive. Notable energy consumption reduction could be obtained by reducing the overall heating time in furnaces. Computer-integrated Machine Learning (ML) and Artificial Intelligence (AI) powered control systems in furnaces could be enablers in achieving the Net-Zero goals in Foundation Industries for sustainable manufacturing. In this work, due to the infeasibility of achieving good quality data in scenarios like reheating furnaces, classical Hottel's zone method based computational model has been used to generate data for ML and Deep Learning (DL) based model training via regression. It should be noted that the zone method provides an elegant way to model the physical phenomenon of Radiative Heat Transfer (RHT), the dominating heat transfer mechanism in high-temperature processes inside heating furnaces. Using this data, an extensive comparison among a wide range of state-of-the-art, representative ML and DL methods has been made against their temperature prediction performances in varying furnace environments. Owing to their holistic balance among inference times and model performance, DL stands out among its counterparts. To further enhance the Out-Of-Distribution (OOD) generalization capability of the trained DL models, we propose a Physics-Informed Neural Network (PINN) by incorporating prior physical knowledge using a set of novel Energy-Balance regularizers. Our setup is a generic framework, is geometry-agnostic of the 3D structure of the underlying furnace, and as such could accommodate any standard ML regression model, to serve as a Digital Twin of the underlying physical processes, for transitioning Foundation Industries towards Industry 4.0.


Rethink the Effectiveness of Text Data Augmentation: An Empirical Analysis

arXiv.org Artificial Intelligence

In recent years, language models (LMs) have made remarkable progress in advancing the field of natural language processing (NLP). However, the impact of data augmentation (DA) techniques on the fine-tuning (FT) performance of these LMs has been a topic of ongoing debate. In this study, we evaluate the effectiveness of three different FT methods in conjugation with back-translation across an array of 7 diverse NLP tasks, including classification and regression types, covering single-sentence and sentence-pair tasks. Contrary to prior assumptions that DA does not contribute to the enhancement of LMs' FT performance, our findings reveal that continued pre-training on augmented data can effectively improve the FT performance of the downstream tasks. In the most favourable case, continued pre-training improves the performance of FT by more than 10% in the few-shot learning setting. Our finding highlights the potential of DA as a powerful tool for bolstering LMs' performance.


Towards Asking Clarification Questions for Information Seeking on Task-Oriented Dialogues

arXiv.org Artificial Intelligence

Task-oriented dialogue systems aim at providing users with task-specific services. Users of such systems often do not know all the information about the task they are trying to accomplish, requiring them to seek information about the task. To provide accurate and personalized task-oriented information seeking results, task-oriented dialogue systems need to address two potential issues: 1) users' inability to describe their complex information needs in their requests; and 2) ambiguous/missing information the system has about the users. In this paper, we propose a new Multi-Attention Seq2Seq Network, named MAS2S, which can ask questions to clarify the user's information needs and the user's profile in task-oriented information seeking. We also extend an existing dataset for task-oriented information seeking, leading to the \ourdataset which contains about 100k task-oriented information seeking dialogues that are made publicly available\footnote{Dataset and code is available at \href{https://github.com/sweetalyssum/clarit}{https://github.com/sweetalyssum/clarit}.}. Experimental results on \ourdataset show that MAS2S outperforms baselines on both clarification question generation and answer prediction.