Goto

Collaborating Authors

 Lin, Xinyu


Collaboration of Large Language Models and Small Recommendation Models for Device-Cloud Recommendation

arXiv.org Artificial Intelligence

Large Language Models (LLMs) for Recommendation (LLM4Rec) is a promising research direction that has demonstrated exceptional performance in this field. However, its inability to capture real-time user preferences greatly limits the practical application of LLM4Rec because (i) LLMs are costly to train and infer frequently, and (ii) LLMs struggle to access real-time data (its large number of parameters poses an obstacle to deployment on devices). Fortunately, small recommendation models (SRMs) can effectively supplement these shortcomings of LLM4Rec diagrams by consuming minimal resources for frequent training and inference, and by conveniently accessing real-time data on devices. In light of this, we designed the Device-Cloud LLM-SRM Collaborative Recommendation Framework (LSC4Rec) under a device-cloud collaboration setting. LSC4Rec aims to integrate the advantages of both LLMs and SRMs, as well as the benefits of cloud and edge computing, achieving a complementary synergy. We enhance the practicability of LSC4Rec by designing three strategies: collaborative training, collaborative inference, and intelligent request. During training, LLM generates candidate lists to enhance the ranking ability of SRM in collaborative scenarios and enables SRM to update adaptively to capture real-time user interests. During inference, LLM and SRM are deployed on the cloud and on the device, respectively. LLM generates candidate lists and initial ranking results based on user behavior, and SRM get reranking results based on the candidate list, with final results integrating both LLM's and SRM's scores. The device determines whether a new candidate list is needed by comparing the consistency of the LLM's and SRM's sorted lists. Our comprehensive and extensive experimental analysis validates the effectiveness of each strategy in LSC4Rec.


Node Importance Estimation Leveraging LLMs for Semantic Augmentation in Knowledge Graphs

arXiv.org Artificial Intelligence

Node Importance Estimation (NIE) is a task that quantifies the importance of node in a graph. Recent research has investigated to exploit various information from Knowledge Graphs (KGs) to estimate node importance scores. However, the semantic information in KGs could be insufficient, missing, and inaccurate, which would limit the performance of existing NIE models. To address these issues, we leverage Large Language Models (LLMs) for semantic augmentation thanks to the LLMs' extra knowledge and ability of integrating knowledge from both LLMs and KGs. To this end, we propose the LLMs Empowered Node Importance Estimation (LENIE) method to enhance the semantic information in KGs for better supporting NIE tasks. To our best knowledge, this is the first work incorporating LLMs into NIE. Specifically, LENIE employs a novel clustering-based triplet sampling strategy to extract diverse knowledge of a node sampled from the given KG. After that, LENIE adopts the node-specific adaptive prompts to integrate the sampled triplets and the original node descriptions, which are then fed into LLMs for generating richer and more precise augmented node descriptions. These augmented descriptions finally initialize node embeddings for boosting the downstream NIE model performance. Extensive experiments demonstrate LENIE's effectiveness in addressing semantic deficiencies in KGs, enabling more informative semantic augmentation and enhancing existing NIE models to achieve the state-of-the-art performance. The source code of LENIE is freely available at \url{https://github.com/XinyuLin-FZ/LENIE}.


Efficient Inference for Large Language Model-based Generative Recommendation

arXiv.org Artificial Intelligence

Large Language Model (LLM)-based generative recommendation has achieved notable success, yet its practical deployment is costly particularly due to excessive inference latency caused by autoregressive decoding. For lossless LLM decoding acceleration, Speculative Decoding (SD) has emerged as a promising solution. However, applying SD to generative recommendation presents unique challenges due to the requirement of generating top-K items (i.e., K distinct token sequences) as a recommendation list by beam search. This leads to more stringent verification in SD, where all the top-K sequences from the target LLM must be successfully drafted by the draft model at each decoding step. To alleviate this, we consider 1) boosting top-K sequence alignment between the draft model and the target LLM, and 2) relaxing the verification strategy to reduce trivial LLM calls. To this end, we propose an alignment framework named AtSpeed, which presents the AtSpeed-S optimization objective for top-K alignment under the strict top-K verification. Moreover, we introduce a relaxed sampling verification strategy that allows high-probability non-top-K drafted sequences to be accepted, significantly reducing LLM calls. Correspondingly, we propose AtSpeed-R for top-K alignment under this relaxed sampling verification. Empirical results on two real-world datasets demonstrate that AtSpeed significantly accelerates LLM-based generative recommendation, e.g., near 2x speedup under strict top-K verification and up to 2.5 speedup under relaxed sampling verification. The codes and datasets will be released in the near future.


Parse Trees Guided LLM Prompt Compression

arXiv.org Artificial Intelligence

Offering rich contexts to Large Language Models (LLMs) has shown to boost the performance in various tasks, but the resulting longer prompt would increase the computational cost and might exceed the input limit of LLMs. Recently, some prompt compression methods have been suggested to shorten the length of prompts by using language models to generate shorter prompts or by developing computational models to select important parts of original prompt. The generative compression methods would suffer from issues like hallucination, while the selective compression methods have not involved linguistic rules and overlook the global structure of prompt. To this end, we propose a novel selective compression method called PartPrompt. It first obtains a parse tree for each sentence based on linguistic rules, and calculates local information entropy for each node in a parse tree. These local parse trees are then organized into a global tree according to the hierarchical structure such as the dependency of sentences, paragraphs, and sections. After that, the root-ward propagation and leaf-ward propagation are proposed to adjust node values over the global tree. Finally, a recursive algorithm is developed to prune the global tree based on the adjusted node values. The experiments show that PartPrompt receives the state-of-the-art performance across various datasets, metrics, compression ratios, and target LLMs for inference. The in-depth ablation studies confirm the effectiveness of designs in PartPrompt, and other additional experiments also demonstrate its superiority in terms of the coherence of compressed prompts and in the extreme long prompt scenario.


A Survey of Generative Search and Recommendation in the Era of Large Language Models

arXiv.org Artificial Intelligence

With the information explosion on the Web, search and recommendation are foundational infrastructures to satisfying users' information needs. As the two sides of the same coin, both revolve around the same core research problem, matching queries with documents or users with items. In the recent few decades, search and recommendation have experienced synchronous technological paradigm shifts, including machine learning-based and deep learning-based paradigms. Recently, the superintelligent generative large language models have sparked a new paradigm in search and recommendation, i.e., generative search (retrieval) and recommendation, which aims to address the matching problem in a generative manner. In this paper, we provide a comprehensive survey of the emerging paradigm in information systems and summarize the developments in generative search and recommendation from a unified perspective. Rather than simply categorizing existing works, we abstract a unified framework for the generative paradigm and break down the existing works into different stages within this framework to highlight the strengths and weaknesses. And then, we distinguish generative search and recommendation with their unique challenges, identify open problems and future directions, and envision the next information-seeking paradigm.


Fossil Image Identification using Deep Learning Ensembles of Data Augmented Multiviews

arXiv.org Artificial Intelligence

Identification of fossil species is crucial to evolutionary studies. Recent advances from deep learning have shown promising prospects in fossil image identification. However, the quantity and quality of labeled fossil images are often limited due to fossil preservation, conditioned sampling, and expensive and inconsistent label annotation by domain experts, which pose great challenges to training deep learning based image classification models. To address these challenges, we follow the idea of the wisdom of crowds and propose a multiview ensemble framework, which collects Original (O), Gray (G), and Skeleton (S) views of each fossil image reflecting its different characteristics to train multiple base models, and then makes the final decision via soft voting. Experiments on the largest fusulinid dataset with 2400 images show that the proposed OGS consistently outperforms baselines (using a single model for each view), and obtains superior or comparable performance compared to OOO (using three base models for three the same Original views). Besides, as the training data decreases, the proposed framework achieves more gains. While considering the identification consistency estimation with respect to human experts, OGS receives the highest agreement with the original labels of dataset and with the re-identifications of two human experts. The validation performance provides a quantitative estimation of consistency across different experts and genera. We conclude that the proposed framework can present state-of-the-art performance in the fusulinid fossil identification case study. This framework is designed for general fossil identification and it is expected to see applications to other fossil datasets in future work. The source code is publicly available at https://github.com/houchengbin/Fossil-Image-Identification to benefit future research in fossil image identification.