Not enough data to create a plot.
Try a different view from the menu above.
Lin, Jionghao
How Can I Improve? Using GPT to Highlight the Desired and Undesired Parts of Open-ended Responses
Lin, Jionghao, Chen, Eason, Han, Zeifei, Gurung, Ashish, Thomas, Danielle R., Tan, Wei, Nguyen, Ngoc Dang, Koedinger, Kenneth R.
Automated explanatory feedback systems play a crucial role in facilitating learning for a large cohort of learners by offering feedback that incorporates explanations, significantly enhancing the learning process. However, delivering such explanatory feedback in real-time poses challenges, particularly when high classification accuracy for domain-specific, nuanced responses is essential. Our study leverages the capabilities of large language models, specifically Generative Pre-Trained Transformers (GPT), to explore a sequence labeling approach focused on identifying components of desired and less desired praise for providing explanatory feedback within a tutor training dataset. Our aim is to equip tutors with actionable, explanatory feedback during online training lessons. To investigate the potential of GPT models for providing the explanatory feedback, we employed two commonly-used approaches: prompting and fine-tuning. To quantify the quality of highlighted praise components identified by GPT models, we introduced a Modified Intersection over Union (M-IoU) score. Our findings demonstrate that: (1) the M-IoU score effectively correlates with human judgment in evaluating sequence quality; (2) using two-shot prompting on GPT-3.5 resulted in decent performance in recognizing effort-based (M-IoU of 0.46) and outcome-based praise (M-IoU of 0.68); and (3) our optimally fine-tuned GPT-3.5 model achieved M-IoU scores of 0.64 for effort-based praise and 0.84 for outcome-based praise, aligning with the satisfaction levels evaluated by human coders. Our results show promise for using GPT models to provide feedback that focuses on specific elements in their open-ended responses that are desirable or could use improvement.
Predicting Learning Performance with Large Language Models: A Study in Adult Literacy
Zhang, Liang, Lin, Jionghao, Borchers, Conrad, Sabatini, John, Hollander, John, Cao, Meng, Hu, Xiangen
Intelligent Tutoring Systems (ITSs) have significantly enhanced adult literacy training, a key factor for societal participation, employment opportunities, and lifelong learning. Our study investigates the application of advanced AI models, including Large Language Models (LLMs) like GPT-4, for predicting learning performance in adult literacy programs in ITSs. This research is motivated by the potential of LLMs to predict learning performance based on its inherent reasoning and computational capabilities. By using reading comprehension datasets from the ITS, AutoTutor, we evaluate the predictive capabilities of GPT-4 versus traditional machine learning methods in predicting learning performance through five-fold cross-validation techniques. Our findings show that the GPT-4 presents the competitive predictive abilities with traditional machine learning methods such as Bayesian Knowledge Tracing, Performance Factor Analysis, Sparse Factor Analysis Lite (SPARFA-Lite), tensor factorization and eXtreme Gradient Boosting (XGBoost). While XGBoost (trained on local machine) outperforms GPT-4 in predictive accuracy, GPT-4-selected XGBoost and its subsequent tuning on the GPT-4 platform demonstrates superior performance compared to local machine execution. Moreover, our investigation into hyper-parameter tuning by GPT-4 versus grid-search suggests comparable performance, albeit with less stability in the automated approach, using XGBoost as the case study. Our study contributes to the field by highlighting the potential of integrating LLMs with traditional machine learning models to enhance predictive accuracy and personalize adult literacy education, setting a foundation for future research in applying LLMs within ITSs.
Improving Assessment of Tutoring Practices using Retrieval-Augmented Generation
Han, Zifei FeiFei, Lin, Jionghao, Gurung, Ashish, Thomas, Danielle R., Chen, Eason, Borchers, Conrad, Gupta, Shivang, Koedinger, Kenneth R.
One-on-one tutoring is an effective instructional method for enhancing learning, yet its efficacy hinges on tutor competencies. Novice math tutors often prioritize content-specific guidance, neglecting aspects such as social-emotional learning. Social-emotional learning promotes equity and inclusion and nurturing relationships with students, which is crucial for holistic student development. Assessing the competencies of tutors accurately and efficiently can drive the development of tailored tutor training programs. However, evaluating novice tutor ability during real-time tutoring remains challenging as it typically requires experts-in-the-loop. To address this challenge, this preliminary study aims to harness Generative Pre-trained Transformers (GPT), such as GPT-3.5 and GPT-4 models, to automatically assess tutors' ability of using social-emotional tutoring strategies. Moreover, this study also reports on the financial dimensions and considerations of employing these models in real-time and at scale for automated assessment. The current study examined four prompting strategies: two basic Zero-shot prompt strategies, Tree of Thought prompt, and Retrieval-Augmented Generator (RAG) based prompt. The results indicate that the RAG prompt demonstrated more accurate performance (assessed by the level of hallucination and correctness in the generated assessment texts) and lower financial costs than the other strategies evaluated. These findings inform the development of personalized tutor training interventions to enhance the the educational effectiveness of tutored learning.
3DG: A Framework for Using Generative AI for Handling Sparse Learner Performance Data From Intelligent Tutoring Systems
Zhang, Liang, Lin, Jionghao, Borchers, Conrad, Cao, Meng, Hu, Xiangen
Learning performance data (e.g., quiz scores and attempts) is significant for understanding learner engagement and knowledge mastery level. However, the learning performance data collected from Intelligent Tutoring Systems (ITSs) often suffers from sparsity, impacting the accuracy of learner modeling and knowledge assessments. To address this, we introduce the 3DG framework (3-Dimensional tensor for Densification and Generation), a novel approach combining tensor factorization with advanced generative models, including Generative Adversarial Network (GAN) and Generative Pre-trained Transformer (GPT), for enhanced data imputation and augmentation. The framework operates by first representing the data as a three-dimensional tensor, capturing dimensions of learners, questions, and attempts. It then densifies the data through tensor factorization and augments it using Generative AI models, tailored to individual learning patterns identified via clustering. Applied to data from an AutoTutor lesson by the Center for the Study of Adult Literacy (CSAL), the 3DG framework effectively generated scalable, personalized simulations of learning performance. Comparative analysis revealed GAN's superior reliability over GPT-4 in this context, underscoring its potential in addressing data sparsity challenges in ITSs and contributing to the advancement of personalized educational technology.
Using Large Language Models to Assess Tutors' Performance in Reacting to Students Making Math Errors
Kakarla, Sanjit, Thomas, Danielle, Lin, Jionghao, Gupta, Shivang, Koedinger, Kenneth R.
Research suggests that tutors should adopt a strategic approach when addressing math errors made by low-efficacy students. Rather than drawing direct attention to the error, tutors should guide the students to identify and correct their mistakes on their own. While tutor lessons have introduced this pedagogical skill, human evaluation of tutors applying this strategy is arduous and time-consuming. Large language models (LLMs) show promise in providing real-time assessment to tutors during their actual tutoring sessions, yet little is known regarding their accuracy in this context. In this study, we investigate the capacity of generative AI to evaluate real-life tutors' performance in responding to students making math errors. By analyzing 50 real-life tutoring dialogues, we find both GPT-3.5-Turbo and GPT-4 demonstrate proficiency in assessing the criteria related to reacting to students making errors. However, both models exhibit limitations in recognizing instances where the student made an error. Notably, GPT-4 tends to overidentify instances of students making errors, often attributing student uncertainty or inferring potential errors where human evaluators did not. Future work will focus on enhancing generalizability by assessing a larger dataset of dialogues and evaluating learning transfer. Specifically, we will analyze the performance of tutors in real-life scenarios when responding to students' math errors before and after lesson completion on this crucial tutoring skill.
Elucidating STEM Concepts through Generative AI: A Multi-modal Exploration of Analogical Reasoning
Cao, Chen, Ding, Zijian, Lee, Gyeong-Geon, Jiao, Jiajun, Lin, Jionghao, Zhai, Xiaoming
This study explores the integration of generative artificial intelligence (AI), specifically large language models, with multi-modal analogical reasoning as an innovative approach to enhance science, technology, engineering, and mathematics (STEM) education. We have developed a novel system that utilizes the capacities of generative AI to transform intricate principles in mathematics, physics, and programming into comprehensible metaphors. To further augment the educational experience, these metaphors are subsequently converted into visual form. Our study aims to enhance the learners' understanding of STEM concepts and their learning engagement by using the visual metaphors. We examine the efficacy of our system via a randomized A/B/C test, assessing learning gains and motivation shifts among the learners. Our study demonstrates the potential of applying large language models to educational practice on STEM subjects. The results will shed light on the design of educational system in terms of harnessing AI's potential to empower educational stakeholders.
AI Chatbots as Multi-Role Pedagogical Agents: Transforming Engagement in CS Education
Cao, Cassie Chen, Ding, Zijian, Lin, Jionghao, Hopfgartner, Frank
This study investigates the use of Artificial Intelligence (AI)-powered, multi-role chatbots as a means to enhance learning experiences and foster engagement in computer science education. Leveraging a design-based research approach, we develop, implement, and evaluate a novel learning environment enriched with four distinct chatbot roles: Instructor Bot, Peer Bot, Career Advising Bot, and Emotional Supporter Bot. These roles, designed around the tenets of Self-Determination Theory, cater to the three innate psychological needs of learners - competence, autonomy, and relatedness. Additionally, the system embraces an inquiry-based learning paradigm, encouraging students to ask questions, seek solutions, and explore their curiosities. We test this system in a higher education context over a period of one month with 200 participating students, comparing outcomes with conditions involving a human tutor and a single chatbot. Our research utilizes a mixed-methods approach, encompassing quantitative measures such as chat log sequence analysis, and qualitative methods including surveys and focus group interviews. By integrating cutting-edge Natural Language Processing techniques such as topic modelling and sentiment analysis, we offer an in-depth understanding of the system's impact on learner engagement, motivation, and inquiry-based learning. This study, through its rigorous design and innovative approach, provides significant insights into the potential of AI-empowered, multi-role chatbots in reshaping the landscape of computer science education and fostering an engaging, supportive, and motivating learning environment.
Comparative Analysis of GPT-4 and Human Graders in Evaluating Praise Given to Students in Synthetic Dialogues
Hirunyasiri, Dollaya, Thomas, Danielle R., Lin, Jionghao, Koedinger, Kenneth R., Aleven, Vincent
Research suggests that providing specific and timely feedback to human tutors enhances their performance. However, it presents challenges due to the time-consuming nature of assessing tutor performance by human evaluators. Large language models, such as the AI-chatbot ChatGPT, hold potential for offering constructive feedback to tutors in practical settings. Nevertheless, the accuracy of AI-generated feedback remains uncertain, with scant research investigating the ability of models like ChatGPT to deliver effective feedback. In this work-in-progress, we evaluate 30 dialogues generated by GPT-4 in a tutor-student setting. We use two different prompting approaches, the zero-shot chain of thought and the few-shot chain of thought, to identify specific components of effective praise based on five criteria. These approaches are then compared to the results of human graders for accuracy. Our goal is to assess the extent to which GPT-4 can accurately identify each praise criterion. We found that both zero-shot and few-shot chain of thought approaches yield comparable results. GPT-4 performs moderately well in identifying instances when the tutor offers specific and immediate praise. However, GPT-4 underperforms in identifying the tutor's ability to deliver sincere praise, particularly in the zero-shot prompting scenario where examples of sincere tutor praise statements were not provided. Future work will focus on enhancing prompt engineering, developing a more general tutoring rubric, and evaluating our method using real-life tutoring dialogues.
Using Large Language Models to Provide Explanatory Feedback to Human Tutors
Lin, Jionghao, Thomas, Danielle R., Han, Feifei, Gupta, Shivang, Tan, Wei, Nguyen, Ngoc Dang, Koedinger, Kenneth R.
Research demonstrates learners engaging in the process of producing explanations to support their reasoning, can have a positive impact on learning. However, providing learners real-time explanatory feedback often presents challenges related to classification accuracy, particularly in domain-specific environments, containing situationally complex and nuanced responses. We present two approaches for supplying tutors real-time feedback within an online lesson on how to give students effective praise. This work-in-progress demonstrates considerable accuracy in binary classification for corrective feedback of effective, or effort-based (F1 score = 0.811), and ineffective, or outcome-based (F1 score = 0.350), praise responses. More notably, we introduce progress towards an enhanced approach of providing explanatory feedback using large language model-facilitated named entity recognition, which can provide tutors feedback, not only while engaging in lessons, but can potentially suggest real-time tutor moves. Future work involves leveraging large language models for data augmentation to improve accuracy, while also developing an explanatory feedback interface.
Robust Educational Dialogue Act Classifiers with Low-Resource and Imbalanced Datasets
Lin, Jionghao, Tan, Wei, Nguyen, Ngoc Dang, Lang, David, Du, Lan, Buntine, Wray, Beare, Richard, Chen, Guanliang, Gasevic, Dragan
Dialogue acts (DAs) can represent conversational actions of tutors or students that take place during tutoring dialogues. Automating the identification of DAs in tutoring dialogues is significant to the design of dialogue-based intelligent tutoring systems. Many prior studies employ machine learning models to classify DAs in tutoring dialogues and invest much effort to optimize the classification accuracy by using limited amounts of training data (i.e., low-resource data scenario). However, beyond the classification accuracy, the robustness of the classifier is also important, which can reflect the capability of the classifier on learning the patterns from different class distributions. We note that many prior studies on classifying educational DAs employ cross entropy (CE) loss to optimize DA classifiers on low-resource data with imbalanced DA distribution. The DA classifiers in these studies tend to prioritize accuracy on the majority class at the expense of the minority class which might not be robust to the data with imbalanced ratios of different DA classes. To optimize the robustness of classifiers on imbalanced class distributions, we propose to optimize the performance of the DA classifier by maximizing the area under the ROC curve (AUC) score (i.e., AUC maximization). Through extensive experiments, our study provides evidence that (i) by maximizing AUC in the training process, the DA classifier achieves significant performance improvement compared to the CE approach under low-resource data, and (ii) AUC maximization approaches can improve the robustness of the DA classifier under different class imbalance ratios.