Goto

Collaborating Authors

 Lin, Huawei


ALinFiK: Learning to Approximate Linearized Future Influence Kernel for Scalable Third-Parity LLM Data Valuation

arXiv.org Artificial Intelligence

Large Language Models (LLMs) heavily rely on high-quality training data, making data valuation crucial for optimizing model performance, especially when working within a limited budget. In this work, we aim to offer a third-party data valuation approach that benefits both data providers and model developers. We introduce a linearized future influence kernel (LinFiK), which assesses the value of individual data samples in improving LLM performance during training. We further propose ALinFiK, a learning strategy to approximate LinFiK, enabling scalable data valuation. Our comprehensive evaluations demonstrate that this approach surpasses existing baselines in effectiveness and efficiency, demonstrating significant scalability advantages as LLM parameters increase.


UniGuardian: A Unified Defense for Detecting Prompt Injection, Backdoor Attacks and Adversarial Attacks in Large Language Models

arXiv.org Artificial Intelligence

Large Language Models (LLMs) are vulnerable to attacks like prompt injection, backdoor attacks, and adversarial attacks, which manipulate prompts or models to generate harmful outputs. In this paper, departing from traditional deep learning attack paradigms, we explore their intrinsic relationship and collectively term them Prompt Trigger Attacks (PTA). This raises a key question: Can we determine if a prompt is benign or poisoned? To address this, we propose UniGuardian, the first unified defense mechanism designed to detect prompt injection, backdoor attacks, and adversarial attacks in LLMs. Additionally, we introduce a single-forward strategy to optimize the detection pipeline, enabling simultaneous attack detection and text generation within a single forward pass. Our experiments confirm that UniGuardian accurately and efficiently identifies malicious prompts in LLMs.


Online Gradient Boosting Decision Tree: In-Place Updates for Efficient Adding/Deleting Data

arXiv.org Machine Learning

Gradient Boosting Decision Tree (GBDT) is one of the most popular machine learning models in various applications. However, in the traditional settings, all data should be simultaneously accessed in the training procedure: it does not allow to add or delete any data instances after training. In this paper, we propose an efficient online learning framework for GBDT supporting both incremental and decremental learning. To the best of our knowledge, this is the first work that considers an in-place unified incremental and decremental learning on GBDT. To reduce the learning cost, we present a collection of optimizations for our framework, so that it can add or delete a small fraction of data on the fly. We theoretically show the relationship between the hyper-parameters of the proposed optimizations, which enables trading off accuracy and cost on incremental and decremental learning. The backdoor attack results show that our framework can successfully inject and remove backdoor in a well-trained model using incremental and decremental learning, and the empirical results on public datasets confirm the effectiveness and efficiency of our proposed online learning framework and optimizations.


DMin: Scalable Training Data Influence Estimation for Diffusion Models

arXiv.org Artificial Intelligence

Identifying the training data samples that most influence a generated image is a critical task in understanding diffusion models, yet existing influence estimation methods are constrained to small-scale or LoRA-tuned models due to computational limitations. As diffusion models scale up, these methods become impractical. To address this challenge, we propose DMin (Diffusion Model influence), a scalable framework for estimating the influence of each training data sample on a given generated image. By leveraging efficient gradient compression and retrieval techniques, DMin reduces storage requirements from 339.39 TB to only 726 MB and retrieves the top-k most influential training samples in under 1 second, all while maintaining performance. Our empirical results demonstrate DMin is both effective in identifying influential training samples and efficient in terms of computational and storage requirements.


Token-wise Influential Training Data Retrieval for Large Language Models

arXiv.org Artificial Intelligence

Given a Large Language Model (LLM) generation, how can we identify which training data led to this generation? In this paper, we proposed RapidIn, a scalable framework adapting to LLMs for estimating the influence of each training data. The proposed framework consists of two stages: caching and retrieval. First, we compress the gradient vectors by over 200,000x, allowing them to be cached on disk or in GPU/CPU memory. Then, given a generation, RapidIn efficiently traverses the cached gradients to estimate the influence within minutes, achieving over a 6,326x speedup. Moreover, RapidIn supports multi-GPU parallelization to substantially accelerate caching and retrieval. Our empirical result confirms the efficiency and effectiveness of RapidIn.