Lin, Chen
Efficient and Universal Neural-Network Decoder for Stabilizer-Based Quantum Error Correction
Hu, Gengyuan, Ouyang, Wanli, Lu, Chao-Yang, Lin, Chen, Zhong, Han-Sen
Quantum error correction is crucial for large-scale quantum computing, but the absence of efficient decoders for new codes like quantum low-density parity-check (QLDPC) codes has hindered progress. Here we introduce a universal decoder based on linear attention sequence modeling and graph neural network that operates directly on any stabilizer code's graph structure. Our numerical experiments demonstrate that this decoder outperforms specialized algorithms in both accuracy and speed across diverse stabilizer codes, including surface codes, color codes, and QLDPC codes. The decoder maintains linear time scaling with syndrome measurements and requires no structural modifications between different codes. For the Bivariate Bicycle code with distance 12, our approach achieves a 39.4% lower logical error rate than previous best decoders while requiring only ~1% of the decoding time. These results provide a practical, universal solution for quantum error correction, eliminating the need for code-specific decoders.
Scalable Equilibrium Sampling with Sequential Boltzmann Generators
Tan, Charlie B., Bose, Avishek Joey, Lin, Chen, Klein, Leon, Bronstein, Michael M., Tong, Alexander
Scalable sampling of molecular states in thermodynamic equilibrium is a long-standing challenge in statistical physics. Boltzmann generators tackle this problem by pairing powerful normalizing flows with importance sampling to obtain statistically independent samples under the target distribution. In this paper, we extend the Boltzmann generator framework and introduce Sequential Boltzmann generators (SBG) with two key improvements. The first is a highly efficient non-equivariant Transformer-based normalizing flow operating directly on all-atom Cartesian coordinates. In contrast to equivariant continuous flows of prior methods, we leverage exactly invertible non-equivariant architectures which are highly efficient both during sample generation and likelihood computation. As a result, this unlocks more sophisticated inference strategies beyond standard importance sampling. More precisely, as a second key improvement we perform inference-time scaling of flow samples using annealed Langevin dynamics which transports samples toward the target distribution leading to lower variance (annealed) importance weights which enable higher fidelity resampling with sequential Monte Carlo. SBG achieves state-of-the-art performance w.r.t. all metrics on molecular systems, demonstrating the first equilibrium sampling in Cartesian coordinates of tri, tetra, and hexapeptides that were so far intractable for prior Boltzmann generators.
Implicit Neural Representations for Chemical Reaction Paths
Ramakrishnan, Kalyan, Schaaf, Lars L., Lin, Chen, Wang, Guangrun, Torr, Philip
We show that neural networks can be optimized to represent minimum energy paths as continuous functions, offering a flexible alternative to discrete path-search methods like Nudged Elastic Band (NEB). Our approach parameterizes reaction paths with a network trained on a loss function that discards tangential energy gradients and enables instant estimation of the transition state. We first validate the method on two-dimensional potentials and then demonstrate its advantages over NEB on challenging atomistic systems where (i) poor initial guesses yield unphysical paths, (ii) multiple competing paths exist, or (iii) the reaction follows a complex multi-step mechanism. Results highlight the versatility of the method -- for instance, a simple adjustment to the sampling strategy during optimization can help escape local-minimum solutions. Finally, in a low-dimensional setting, we demonstrate that a single neural network can learn from existing paths and generalize to unseen systems, showing promise for a universal reaction path representation.
DeepThink: Aligning Language Models with Domain-Specific User Intents
Li, Yang, Luo, Mingxuan, Gong, Yeyun, Lin, Chen, Jiao, Jian, Liu, Yi, Huang, Kaili
Supervised fine-tuning with synthesized instructions has been a common practice for adapting LLMs to domain-specific QA tasks. However, the synthesized instructions deviate from real user questions and expected answers. This study proposes a novel framework called DeepThink to generate high-quality instructions. DeepThink first generates a few seed questions to mimic actual user questions, simulates conversations to uncover the hidden user needs, and refines the answer by conversational contexts and the retrieved documents for more comprehensive answers. Experiments demonstrate that DeepThink achieves an average performance improvement of 7.92% compared to a GPT-4-turbo+RAG-based assistant on the real user test set in the advertising domain across dimensions such as relevance, completeness, clarity, accuracy, and actionability.
Sigma: Differential Rescaling of Query, Key and Value for Efficient Language Models
Lin, Zhenghao, Tang, Zihao, Liu, Xiao, Gong, Yeyun, Cheng, Yi, Chen, Qi, Li, Hang, Xin, Ying, Yang, Ziyue, Yang, Kailai, Yan, Yu, Liang, Xiao, Lu, Shuai, Huang, Yiming, Luo, Zheheng, Qu, Lei, Feng, Xuan, Wang, Yaoxiang, Xia, Yuqing, Chen, Feiyang, Jiang, Yuting, Hu, Yasen, Ni, Hao, Li, Binyang, Zhao, Guoshuai, Chiang, Jui-Hao, Guo, Zhongxin, Lin, Chen, Kuang, Kun, Li, Wenjie, Shen, Yelong, Jiao, Jian, Cheng, Peng, Yang, Mao
We introduce Sigma, an efficient large language model specialized for the system domain, empowered by a novel architecture including DiffQKV attention, and pre-trained on our meticulously collected system domain data. DiffQKV attention significantly enhances the inference efficiency of Sigma by optimizing the Query (Q), Key (K), and Value (V) components in the attention mechanism differentially, based on their varying impacts on the model performance and efficiency indicators. Specifically, we (1) conduct extensive experiments that demonstrate the model's varying sensitivity to the compression of K and V components, leading to the development of differentially compressed KV, and (2) propose augmented Q to expand the Q head dimension, which enhances the model's representation capacity with minimal impacts on the inference speed. Rigorous theoretical and empirical analyses reveal that DiffQKV attention significantly enhances efficiency, achieving up to a 33.36% improvement in inference speed over the conventional grouped-query attention (GQA) in long-context scenarios. We pre-train Sigma on 6T tokens from various sources, including 19.5B system domain data that we carefully collect and 1T tokens of synthesized and rewritten data. In general domains, Sigma achieves comparable performance to other state-of-arts models. In the system domain, we introduce the first comprehensive benchmark AIMicius, where Sigma demonstrates remarkable performance across all tasks, significantly outperforming GPT-4 with an absolute improvement up to 52.5%.
From Intention To Implementation: Automating Biomedical Research via LLMs
Luo, Yi, Shi, Linghang, Li, Yihao, Zhuang, Aobo, Gong, Yeyun, Liu, Ling, Lin, Chen
Conventional biomedical research is increasingly labor-intensive due to the exponential growth of scientific literature and datasets. Artificial intelligence (AI), particularly Large Language Models (LLMs), has the potential to revolutionize this process by automating various steps. Still, significant challenges remain, including the need for multidisciplinary expertise, logicality of experimental design, and performance measurements. This paper introduces BioResearcher, the first end-to-end automated system designed to streamline the entire biomedical research process involving dry lab experiments. BioResearcher employs a modular multi-agent architecture, integrating specialized agents for search, literature processing, experimental design, and programming. By decomposing complex tasks into logically related sub-tasks and utilizing a hierarchical learning approach, BioResearcher effectively addresses the challenges of multidisciplinary requirements and logical complexity. Furthermore, BioResearcher incorporates an LLM-based reviewer for in-process quality control and introduces novel evaluation metrics to assess the quality and automation of experimental protocols. BioResearcher successfully achieves an average execution success rate of 63.07% across eight previously unmet research objectives. The generated protocols averagely outperform typical agent systems by 22.0% on five quality metrics. The system demonstrates significant potential to reduce researchers' workloads and accelerate biomedical discoveries, paving the way for future innovations in automated research systems.
Rho-1: Not All Tokens Are What You Need
Lin, Zhenghao, Gou, Zhibin, Gong, Yeyun, Liu, Xiao, Shen, Yelong, Xu, Ruochen, Lin, Chen, Yang, Yujiu, Jiao, Jian, Duan, Nan, Chen, Weizhu
Previous language model pre-training methods have uniformly applied a next-token prediction loss to all training tokens. Challenging this norm, we posit that ''Not all tokens in a corpus are equally important for language model training''. Our initial analysis examines token-level training dynamics of language model, revealing distinct loss patterns for different tokens. Leveraging these insights, we introduce a new language model called Rho-1. Unlike traditional LMs that learn to predict every next token in a corpus, Rho-1 employs Selective Language Modeling (SLM), which selectively trains on useful tokens that aligned with the desired distribution. This approach involves scoring pretraining tokens using a reference model, and then training the language model with a focused loss on tokens with higher scores. When continual pretraining on 15B OpenWebMath corpus, Rho-1 yields an absolute improvement in few-shot accuracy of up to 30% in 9 math tasks. After fine-tuning, Rho-1-1B and 7B achieved state-of-the-art results of 40.6% and 51.8% on MATH dataset, respectively - matching DeepSeekMath with only 3% of the pretraining tokens. Furthermore, when pretraining on 80B general tokens, Rho-1 achieves 6.8% average enhancement across 15 diverse tasks, increasing both efficiency and performance of the language model pre-training.
DocReLM: Mastering Document Retrieval with Language Model
Wei, Gengchen, Pang, Xinle, Zhang, Tianning, Sun, Yu, Qian, Xun, Lin, Chen, Zhong, Han-Sen, Ouyang, Wanli
With over 200 million published academic documents and millions of new documents being written each year, academic researchers face the challenge of searching for information within this vast corpus. However, existing retrieval systems struggle to understand the semantics and domain knowledge present in academic papers. In this work, we demonstrate that by utilizing large language models, a document retrieval system can achieve advanced semantic understanding capabilities, significantly outperforming existing systems. Our approach involves training the retriever and reranker using domain-specific data generated by large language models. Additionally, we utilize large language models to identify candidates from the references of retrieved papers to further enhance the performance. We use a test set annotated by academic researchers in the fields of quantum physics and computer vision to evaluate our system's performance. The results show that DocReLM achieves a Top 10 accuracy of 44.12% in computer vision, compared to Google Scholar's 15.69%, and an increase to 36.21% in quantum physics, while that of Google Scholar is 12.96%.
Ensuring Safe and High-Quality Outputs: A Guideline Library Approach for Language Models
Luo, Yi, Lin, Zhenghao, Zhang, Yuhao, Sun, Jiashuo, Lin, Chen, Xu, Chengjin, Su, Xiangdong, Shen, Yelong, Guo, Jian, Gong, Yeyun
Large Language Models (LLMs) exhibit impressive capabilities but also present risks such as biased content generation and privacy issues. One of the current alignment techniques includes principle-driven integration, but it faces challenges arising from the imprecision of manually crafted rules and inadequate risk perception in models without safety training. To address these, we introduce Guide-Align, a two-stage approach. Initially, a safety-trained model identifies potential risks and formulates specific guidelines for various inputs, establishing a comprehensive library of guidelines and a model for input-guidelines retrieval. Subsequently, the retrieval model correlates new inputs with relevant guidelines, which guide LLMs in response generation to ensure safe and high-quality outputs, thereby aligning with human values. An additional optional stage involves fine-tuning a model with well-aligned datasets generated through the process implemented in the second stage. Our method customizes guidelines to accommodate diverse inputs, thereby enhancing the fine-grainedness and comprehensiveness of the guideline library. Furthermore, it incorporates safety expertise from a safety-trained LLM through a lightweight retrieval model. We evaluate our approach on three benchmarks, demonstrating significant improvements in LLM security and quality. Notably, our fine-tuned model, Labrador, even at 13 billion parameters, outperforms GPT-3.5-turbo and surpasses GPT-4 in alignment capabilities.
LOCR: Location-Guided Transformer for Optical Character Recognition
Sun, Yu, Zhou, Dongzhan, Lin, Chen, He, Conghui, Ouyang, Wanli, Zhong, Han-Sen
Academic documents are packed with texts, equations, tables, and figures, requiring comprehensive understanding for accurate Optical Character Recognition (OCR). While end-to-end OCR methods offer improved accuracy over layout-based approaches, they often grapple with significant repetition issues, especially with complex layouts in Out-Of-Domain (OOD) documents.To tackle this issue, we propose LOCR, a model that integrates location guiding into the transformer architecture during autoregression. We train the model on a dataset comprising over 77M text-location pairs from 125K academic document pages, including bounding boxes for words, tables and mathematical symbols. LOCR adeptly handles various formatting elements and generates content in Markdown language. It outperforms all existing methods in our test set constructed from arXiv, as measured by edit distance, BLEU, METEOR and F-measure.LOCR also reduces repetition frequency from 4.4% of pages to 0.5% in the arXiv dataset, from 13.2% to 1.3% in OOD quantum physics documents and from 8.1% to 1.8% in OOD marketing documents. Additionally, LOCR features an interactive OCR mode, facilitating the generation of complex documents through a few location prompts from human.