Goto

Collaborating Authors

 Lin, Alex Tong


MS-IMAP -- A Multi-Scale Graph Embedding Approach for Interpretable Manifold Learning

arXiv.org Artificial Intelligence

Deriving meaningful representations from complex, high-dimensional data in unsupervised settings is crucial across diverse machine learning applications. This paper introduces a framework for multi-scale graph network embedding based on spectral graph wavelets that employs a contrastive learning approach. A significant feature of the proposed embedding is its capacity to establish a correspondence between the embedding space and the input feature space which aids in deriving feature importance of the original features. We theoretically justify our approach and demonstrate that, in Paley-Wiener spaces on combinatorial graphs, the spectral graph wavelets operator offers greater flexibility and better control over smoothness properties compared to the Laplacian operator. We validate the effectiveness of our proposed graph embedding on a variety of public datasets through a range of downstream tasks, including clustering and unsupervised feature importance.


Multi-Agent Shape Control with Optimal Transport

arXiv.org Artificial Intelligence

Optimal control seeks to find the best policy for an agent that optimizes a certain criterion. This general formulation allows optimal control theory to be applied in numerous areas such as robotics, finance, aeronautics, and many other fields. Inherently, optimal control optimizes the control of a single agent, but in recent years, extending optimal control problems to the realm of multi-agents has been a popular trend. Indeed, there are numerous cases where we want to model not just a single agent, but many, e.g. a fleet of drones. Here we introduce MASCOT: Multi-Agent Shape Control with Optimal Transport, a method to compute solutions to multi-agent optimal control problems that involve shape, formation, or density constraints among the agents. These constraints can be formulated in the running cost of the agents, or as a terminal cost, or even both. We first introduce the reader to optimal control and its multi-agent version. We then review the idea of optimal transport and Earth Mover's Distance. Finally, we demonstrate the method on some examples.


Parameter Inference of Time Series by Delay Embeddings and Learning Differentiable Operators

arXiv.org Artificial Intelligence

We provide a method to identify system parameters of dynamical systems, called ID-ODE -- Inference by Differentiation and Observing Delay Embeddings. In this setting, we are given a dataset of trajectories from a dynamical system with system parameter labels. Our goal is to identify system parameters of new trajectories. The given trajectories may or may not encompass the full state of the system, and we may only observe a one-dimensional time series. In the latter case, we reconstruct the full state by using delay embeddings, and under sufficient conditions, Taken's Embedding Theorem assures us the reconstruction is diffeomorphic to the original. This allows our method to work on time series. Our method works by first learning the velocity operator (as given or reconstructed) with a neural network having both state and system parameters as variable inputs. Then on new trajectories we backpropagate prediction errors to the system parameter inputs giving us a gradient. We then use gradient descent to infer the correct system parameter. We demonstrate the efficacy of our approach on many numerical examples: the Lorenz system, Lorenz96, Lotka-Volterra Predator-Prey, and the Compound Double Pendulum. We also apply our algorithm on a real-world dataset: propulsion of the Hall-effect Thruster (HET).


Wasserstein Proximal of GANs

arXiv.org Artificial Intelligence

We introduce a new method for training generative adversarial networks by applying the Wasserstein-2 metric proximal on the generators. The approach is based on Wasserstein information geometry. It defines a parametrization invariant natural gradient by pulling back optimal transport structures from probability space to parameter space. We obtain easy-to-implement iterative regularizers for the parameter updates of implicit deep generative models. Our experiments demonstrate that this method improves the speed and stability of training in terms of wall-clock time and Fr\'echet Inception Distance.


Projecting to Manifolds via Unsupervised Learning

arXiv.org Machine Learning

We present a new mechanism, called adversarial projection, that projects a given signal onto the intrinsically low dimensional manifold of true data. This operator can be used for solving inverse problems, which consists of recovering a signal from a collection of noisy measurements. Rather than attempt to encode prior knowledge via an analytic regularizer, we leverage available data to project signals directly onto the (possibly nonlinear) manifold of true data (i.e., regularize via an indicator function of the manifold). Our approach avoids the difficult task of forming a direct representation of the manifold. Instead, we directly learn the projection operator by solving a sequence of unsupervised learning problems, and we prove our method converges in probability to the desired projection. This operator can then be directly incorporated into optimization algorithms in the same manner as Plug-and-Play methods, but now with robust theoretical guarantees. Numerical examples are provided.


Wasserstein Diffusion Tikhonov Regularization

arXiv.org Machine Learning

We propose regularization strategies for learning discriminative models that are robust to in-class variations of the input data. We use the Wasserstein-2 geometry to capture semantically meaningful neighborhoods in the space of images, and define a corresponding input-dependent additive noise data augmentation model. Expanding and integrating the augmented loss yields an effective Tikhonov-type Wasserstein diffusion smoothness regularizer. This approach allows us to apply high levels of regularization and train functions that have low variability within classes but remain flexible across classes. We provide efficient methods for computing the regularizer at a negligible cost in comparison to training with adversarial data augmentation. Initial experiments demonstrate improvements in generalization performance under adversarial perturbations and also large in-class variations of the input data.


CESMA: Centralized Expert Supervises Multi-Agents

arXiv.org Artificial Intelligence

We consider the reinforcement learning problem of training multiple agents in order to maximize a shared reward. In this multi-agent system, each agent seeks to maximize the reward while interacting with other agents, and they may or may not be able to communicate. Typically the agents do not have access to other agent policies and thus each agent observes a non-stationary and partially-observable environment. In order to resolve this issue, we demonstrate a novel multi-agent training framework that first turns a multi-agent problem into a single-agent problem to obtain a centralized expert that is then used to guide supervised learning for multiple independent agents with the goal of decentralizing the policy. We additionally demonstrate a way to turn the exponential growth in the joint action space into a linear growth for the centralized policy. Overall, the problem is twofold: the problem of obtaining a centralized expert, and then the problem of supervised learning to train the multi-agents. We demonstrate our solutions to both of these tasks, and show that supervised learning can be used to decentralize a multi-agent policy.