Limkonchotiwat, Peerat
Crowdsource, Crawl, or Generate? Creating SEA-VL, a Multicultural Vision-Language Dataset for Southeast Asia
Cahyawijaya, Samuel, Lovenia, Holy, Moniz, Joel Ruben Antony, Wong, Tack Hwa, Farhansyah, Mohammad Rifqi, Maung, Thant Thiri, Hudi, Frederikus, Anugraha, David, Habibi, Muhammad Ravi Shulthan, Qorib, Muhammad Reza, Agarwal, Amit, Imperial, Joseph Marvin, Patel, Hitesh Laxmichand, Feliren, Vicky, Nasution, Bahrul Ilmi, Rufino, Manuel Antonio, Winata, Genta Indra, Rajagede, Rian Adam, Catalan, Carlos Rafael, Imam, Mohamed Fazli, Pattnayak, Priyaranjan, Pranida, Salsabila Zahirah, Pratama, Kevin, Bangera, Yeshil, Na-Thalang, Adisai, Monderin, Patricia Nicole, Song, Yueqi, Simon, Christian, Ng, Lynnette Hui Xian, Sapan, Richardy Lobo', Rafi, Taki Hasan, Wang, Bin, Supryadi, null, Veerakanjana, Kanyakorn, Ittichaiwong, Piyalitt, Roque, Matthew Theodore, Vincentio, Karissa, Kreangphet, Takdanai, Artkaew, Phakphum, Palgunadi, Kadek Hendrawan, Yu, Yanzhi, Hastuti, Rochana Prih, Nixon, William, Bangera, Mithil, Lim, Adrian Xuan Wei, Khine, Aye Hninn, Zhafran, Hanif Muhammad, Ferdinan, Teddy, Izzani, Audra Aurora, Singh, Ayushman, Evan, null, Krito, Jauza Akbar, Anugraha, Michael, Ilasariya, Fenal Ashokbhai, Li, Haochen, Daniswara, John Amadeo, Tjiaranata, Filbert Aurelian, Yulianrifat, Eryawan Presma, Udomcharoenchaikit, Can, Ansori, Fadil Risdian, Ihsani, Mahardika Krisna, Nguyen, Giang, Barik, Anab Maulana, Velasco, Dan John, Genadi, Rifo Ahmad, Saha, Saptarshi, Wei, Chengwei, Flores, Isaiah, Chen, Kenneth Ko Han, Santos, Anjela Gail, Lim, Wan Shen, Phyo, Kaung Si, Santos, Tim, Dwiastuti, Meisyarah, Luo, Jiayun, Cruz, Jan Christian Blaise, Hee, Ming Shan, Hanif, Ikhlasul Akmal, Hakim, M. Alif Al, Sya'ban, Muhammad Rizky, Kerdthaisong, Kun, Miranda, Lester James V., Koto, Fajri, Fatyanosa, Tirana Noor, Aji, Alham Fikri, Rosal, Jostin Jerico, Kevin, Jun, Wijaya, Robert, Kampman, Onno P., Zhang, Ruochen, Karlsson, Bรถrje F., Limkonchotiwat, Peerat
Southeast Asia (SEA) is a region of extraordinary linguistic and cultural diversity, yet it remains significantly underrepresented in vision-language (VL) research. This often results in artificial intelligence (AI) models that fail to capture SEA cultural nuances. To fill this gap, we present SEA-VL, an open-source initiative dedicated to developing high-quality, culturally relevant data for SEA languages. By involving contributors from SEA countries, SEA-VL aims to ensure better cultural relevance and diversity, fostering greater inclusivity of underrepresented languages in VL research. Beyond crowdsourcing, our initiative goes one step further in the exploration of the automatic collection of culturally relevant images through crawling and image generation. First, we find that image crawling achieves approximately ~85% cultural relevance while being more cost- and time-efficient than crowdsourcing. Second, despite the substantial progress in generative vision models, synthetic images remain unreliable in accurately reflecting SEA cultures. The generated images often fail to reflect the nuanced traditions and cultural contexts of the region. Collectively, we gather 1.28M SEA culturally-relevant images, more than 50 times larger than other existing datasets. Through SEA-VL, we aim to bridge the representation gap in SEA, fostering the development of more inclusive AI systems that authentically represent diverse cultures across SEA.
Towards Better Understanding of Program-of-Thought Reasoning in Cross-Lingual and Multilingual Environments
Payoungkhamdee, Patomporn, Tuchinda, Pume, Baek, Jinheon, Cahyawijaya, Samuel, Udomcharoenchaikit, Can, Manakul, Potsawee, Limkonchotiwat, Peerat, Chuangsuwanich, Ekapol, Nutanong, Sarana
Multi-step reasoning is essential for large language models (LLMs), yet multilingual performance remains challenging. While Chain-of-Thought (CoT) prompting improves reasoning, it struggles with non-English languages due to the entanglement of reasoning and execution. Program-of-Thought (PoT) prompting separates reasoning from execution, offering a promising alternative but shifting the challenge to generating programs from non-English questions. We propose a framework to evaluate PoT by separating multilingual reasoning from code execution to examine (i) the impact of fine-tuning on question-reasoning alignment and (ii) how reasoning quality affects answer correctness. Our findings demonstrate that PoT fine-tuning substantially enhances multilingual reasoning, outperforming CoT fine-tuned models. We further demonstrate a strong correlation between reasoning quality (measured through code quality) and answer accuracy, highlighting its potential as a test-time performance improvement heuristic.
SEA-HELM: Southeast Asian Holistic Evaluation of Language Models
Susanto, Yosephine, Hulagadri, Adithya Venkatadri, Montalan, Jann Railey, Ngui, Jian Gang, Yong, Xian Bin, Leong, Weiqi, Rengarajan, Hamsawardhini, Limkonchotiwat, Peerat, Mai, Yifan, Tjhi, William Chandra
With the rapid emergence of novel capabilities in Large Language Models (LLMs), the need for rigorous multilingual and multicultural benchmarks that are integrated has become more pronounced. Though existing LLM benchmarks are capable of evaluating specific capabilities of LLMs in English as well as in various mid- to low-resource languages, including those in the Southeast Asian (SEA) region, a comprehensive and authentic evaluation suite for the SEA languages has not been developed thus far. Here, we present SEA-HELM, a holistic linguistic and cultural LLM evaluation suite that emphasizes SEA languages, comprising five core pillars: (1) NLP Classics, (2) LLM-specifics, (3) SEA Linguistics, (4) SEA Culture, (5) Safety. SEA-HELM currently supports Filipino, Indonesian, Tamil, Thai, and Vietnamese. We also introduce the SEA-HELM leaderboard, which allows users to understand models' multilingual and multicultural performance in a systematic and user-friendly manner.
Global MMLU: Understanding and Addressing Cultural and Linguistic Biases in Multilingual Evaluation
Singh, Shivalika, Romanou, Angelika, Fourrier, Clรฉmentine, Adelani, David I., Ngui, Jian Gang, Vila-Suero, Daniel, Limkonchotiwat, Peerat, Marchisio, Kelly, Leong, Wei Qi, Susanto, Yosephine, Ng, Raymond, Longpre, Shayne, Ko, Wei-Yin, Smith, Madeline, Bosselut, Antoine, Oh, Alice, Martins, Andre F. T., Choshen, Leshem, Ippolito, Daphne, Ferrante, Enzo, Fadaee, Marzieh, Ermis, Beyza, Hooker, Sara
Cultural biases in multilingual datasets pose significant challenges for their effectiveness as global benchmarks. These biases stem not only from language but also from the cultural knowledge required to interpret questions, reducing the practical utility of translated datasets like MMLU. Furthermore, translation often introduces artifacts that can distort the meaning or clarity of questions in the target language. A common practice in multilingual evaluation is to rely on machine-translated evaluation sets, but simply translating a dataset is insufficient to address these challenges. In this work, we trace the impact of both of these issues on multilingual evaluations and ensuing model performances. Our large-scale evaluation of state-of-the-art open and proprietary models illustrates that progress on MMLU depends heavily on learning Western-centric concepts, with 28% of all questions requiring culturally sensitive knowledge. Moreover, for questions requiring geographic knowledge, an astounding 84.9% focus on either North American or European regions. Rankings of model evaluations change depending on whether they are evaluated on the full portion or the subset of questions annotated as culturally sensitive, showing the distortion to model rankings when blindly relying on translated MMLU. We release Global-MMLU, an improved MMLU with evaluation coverage across 42 languages -- with improved overall quality by engaging with compensated professional and community annotators to verify translation quality while also rigorously evaluating cultural biases present in the original dataset. This comprehensive Global-MMLU set also includes designated subsets labeled as culturally sensitive and culturally agnostic to allow for more holistic, complete evaluation.
WorldCuisines: A Massive-Scale Benchmark for Multilingual and Multicultural Visual Question Answering on Global Cuisines
Winata, Genta Indra, Hudi, Frederikus, Irawan, Patrick Amadeus, Anugraha, David, Putri, Rifki Afina, Wang, Yutong, Nohejl, Adam, Prathama, Ubaidillah Ariq, Ousidhoum, Nedjma, Amriani, Afifa, Rzayev, Anar, Das, Anirban, Pramodya, Ashmari, Adila, Aulia, Wilie, Bryan, Mawalim, Candy Olivia, Cheng, Ching Lam, Abolade, Daud, Chersoni, Emmanuele, Santus, Enrico, Ikhwantri, Fariz, Kuwanto, Garry, Zhao, Hanyang, Wibowo, Haryo Akbarianto, Lovenia, Holy, Cruz, Jan Christian Blaise, Putra, Jan Wira Gotama, Myung, Junho, Susanto, Lucky, Machin, Maria Angelica Riera, Zhukova, Marina, Anugraha, Michael, Adilazuarda, Muhammad Farid, Santosa, Natasha, Limkonchotiwat, Peerat, Dabre, Raj, Audino, Rio Alexander, Cahyawijaya, Samuel, Zhang, Shi-Xiong, Salim, Stephanie Yulia, Zhou, Yi, Gui, Yinxuan, Adelani, David Ifeoluwa, Lee, En-Shiun Annie, Okada, Shogo, Purwarianti, Ayu, Aji, Alham Fikri, Watanabe, Taro, Wijaya, Derry Tanti, Oh, Alice, Ngo, Chong-Wah
Vision Language Models (VLMs) often struggle with culture-specific knowledge, particularly in languages other than English and in underrepresented cultural contexts. To evaluate their understanding of such knowledge, we introduce WorldCuisines, a massive-scale benchmark for multilingual and multicultural, visually grounded language understanding. This benchmark includes a visual question answering (VQA) dataset with text-image pairs across 30 languages and dialects, spanning 9 language families and featuring over 1 million data points, making it the largest multicultural VQA benchmark to date. It includes tasks for identifying dish names and their origins. We provide evaluation datasets in two sizes (12k and 60k instances) alongside a training dataset (1 million instances). Our findings show that while VLMs perform better with correct location context, they struggle with adversarial contexts and predicting specific regional cuisines and languages. To support future research, we release a knowledge base with annotated food entries and images along with the VQA data.
Seed-Free Synthetic Data Generation Framework for Instruction-Tuning LLMs: A Case Study in Thai
Pengpun, Parinthapat, Udomcharoenchaikit, Can, Buaphet, Weerayut, Limkonchotiwat, Peerat
We present a synthetic data approach for instruction-tuning large language models (LLMs) for low-resource languages in a data-efficient manner, specifically focusing on Thai. We identify three key properties that contribute to the effectiveness of instruction-tuning datasets: fluency, diversity, and cultural context. We propose a seed-data-free framework for generating synthetic instruction-tuning data that incorporates these essential properties. Our framework employs an LLM to generate diverse topics, retrieve relevant contexts from Wikipedia, and create instructions for various tasks, such as question answering, summarization, and conversation. The experimental results show that our best-performing synthetic dataset, which incorporates all three key properties, achieves competitive performance using only 5,000 instructions when compared to state-of-the-art Thai LLMs trained on hundreds of thousands of instructions. Our code and dataset are publicly available at https://github.com/parinzee/seed-free-synthetic-instruct.
Can General-Purpose Large Language Models Generalize to English-Thai Machine Translation ?
Chiaranaipanich, Jirat, Hanmatheekuna, Naiyarat, Sawatphol, Jitkapat, Tiankanon, Krittamate, Kinchagawat, Jiramet, Chinkamol, Amrest, Pengpun, Parinthapat, Ittichaiwong, Piyalitt, Limkonchotiwat, Peerat
Large language models (LLMs) perform well on common tasks but struggle with generalization in low-resource and low-computation settings. We examine this limitation by testing various LLMs and specialized translation models on English-Thai machine translation and code-switching datasets. Our findings reveal that under more strict computational constraints, such as 4-bit quantization, LLMs fail to translate effectively. In contrast, specialized models, with comparable or lower computational requirements, consistently outperform LLMs. This underscores the importance of specialized models for maintaining performance under resource constraints.
On Creating an English-Thai Code-switched Machine Translation in Medical Domain
Pengpun, Parinthapat, Tiankanon, Krittamate, Chinkamol, Amrest, Kinchagawat, Jiramet, Chairuengjitjaras, Pitchaya, Supholkhan, Pasit, Aussavavirojekul, Pubordee, Boonnag, Chiraphat, Veerakanjana, Kanyakorn, Phimsiri, Hirunkul, Sae-jia, Boonthicha, Sataudom, Nattawach, Ittichaiwong, Piyalitt, Limkonchotiwat, Peerat
Machine translation (MT) in the medical domain plays a pivotal role in enhancing healthcare quality and disseminating medical knowledge. Despite advancements in English-Thai MT technology, common MT approaches often underperform in the medical field due to their inability to precisely translate medical terminologies. Our research prioritizes not merely improving translation accuracy but also maintaining medical terminology in English within the translated text through code-switched (CS) translation. We developed a method to produce CS medical translation data, fine-tuned a CS translation model with this data, and evaluated its performance against strong baselines, such as Google Neural Machine Translation (NMT) and GPT-3.5/GPT-4. Our model demonstrated competitive performance in automatic metrics and was highly favored in human preference evaluations. Our evaluation result also shows that medical professionals significantly prefer CS translations that maintain critical English terms accurately, even if it slightly compromises fluency. Our code and test set are publicly available https://github.com/preceptorai-org/NLLB_CS_EM_NLP2024.
SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages
Lovenia, Holy, Mahendra, Rahmad, Akbar, Salsabil Maulana, Miranda, Lester James V., Santoso, Jennifer, Aco, Elyanah, Fadhilah, Akhdan, Mansurov, Jonibek, Imperial, Joseph Marvin, Kampman, Onno P., Moniz, Joel Ruben Antony, Habibi, Muhammad Ravi Shulthan, Hudi, Frederikus, Montalan, Railey, Ignatius, Ryan, Lopo, Joanito Agili, Nixon, William, Karlsson, Bรถrje F., Jaya, James, Diandaru, Ryandito, Gao, Yuze, Amadeus, Patrick, Wang, Bin, Cruz, Jan Christian Blaise, Whitehouse, Chenxi, Parmonangan, Ivan Halim, Khelli, Maria, Zhang, Wenyu, Susanto, Lucky, Ryanda, Reynard Adha, Hermawan, Sonny Lazuardi, Velasco, Dan John, Kautsar, Muhammad Dehan Al, Hendria, Willy Fitra, Moslem, Yasmin, Flynn, Noah, Adilazuarda, Muhammad Farid, Li, Haochen, Lee, Johanes, Damanhuri, R., Sun, Shuo, Qorib, Muhammad Reza, Djanibekov, Amirbek, Leong, Wei Qi, Do, Quyet V., Muennighoff, Niklas, Pansuwan, Tanrada, Putra, Ilham Firdausi, Xu, Yan, Tai, Ngee Chia, Purwarianti, Ayu, Ruder, Sebastian, Tjhi, William, Limkonchotiwat, Peerat, Aji, Alham Fikri, Keh, Sedrick, Winata, Genta Indra, Zhang, Ruochen, Koto, Fajri, Yong, Zheng-Xin, Cahyawijaya, Samuel
Southeast Asia (SEA) is a region rich in linguistic diversity and cultural variety, with over 1,300 indigenous languages and a population of 671 million people. However, prevailing AI models suffer from a significant lack of representation of texts, images, and audio datasets from SEA, compromising the quality of AI models for SEA languages. Evaluating models for SEA languages is challenging due to the scarcity of high-quality datasets, compounded by the dominance of English training data, raising concerns about potential cultural misrepresentation. To address these challenges, we introduce SEACrowd, a collaborative initiative that consolidates a comprehensive resource hub that fills the resource gap by providing standardized corpora in nearly 1,000 SEA languages across three modalities. Through our SEACrowd benchmarks, we assess the quality of AI models on 36 indigenous languages across 13 tasks, offering valuable insights into the current AI landscape in SEA. Furthermore, we propose strategies to facilitate greater AI advancements, maximizing potential utility and resource equity for the future of AI in SEA.
WangchanLion and WangchanX MRC Eval
Phatthiyaphaibun, Wannaphong, Nonesung, Surapon, Payoungkhamdee, Patomporn, Limkonchotiwat, Peerat, Udomcharoenchaikit, Can, Sawatphol, Jitkapat, Chaksangchaichot, Chompakorn, Chuangsuwanich, Ekapol, Nutanong, Sarana
This technical report describes the development of WangchanLion, an instruction fine-tuned model focusing on Machine Reading Comprehension (MRC) in the Thai language. Our model is based on SEA-LION and a collection of instruction following datasets. To promote open research and reproducibility, we publicly release all training data, code, and the final model weights under the Apache-2 license. To assess the contextual understanding capability, we conducted extensive experimental studies using two Thai MRC datasets, XQuAD and Iapp_wiki_qa_squad. Experimental results demonstrate the model's ability to comprehend the context and produce an answer faithful to the reference one in 0-shot and 1-shot settings. In addition, our evaluation goes beyond the traditional MRC. We propose a new evaluation scheme assessing the answer's correctness, helpfulness, conciseness, and contextuality. Our code is available publicly at https://github.com/vistec-AI/WangchanLion.