Liang, Yaobo
UniGraspTransformer: Simplified Policy Distillation for Scalable Dexterous Robotic Grasping
Wang, Wenbo, Wei, Fangyun, Zhou, Lei, Chen, Xi, Luo, Lin, Yi, Xiaohan, Zhang, Yizhong, Liang, Yaobo, Xu, Chang, Lu, Yan, Yang, Jiaolong, Guo, Baining
We introduce UniGraspTransformer, a universal Transformer-based network for dexterous robotic grasping that simplifies training while enhancing scalability and performance. Unlike prior methods such as UniDexGrasp++, which require complex, multi-step training pipelines, UniGraspTransformer follows a streamlined process: first, dedicated policy networks are trained for individual objects using reinforcement learning to generate successful grasp trajectories; then, these trajectories are distilled into a single, universal network. Our approach enables UniGraspTransformer to scale effectively, incorporating up to 12 self-attention blocks for handling thousands of objects with diverse poses. Additionally, it generalizes well to both idealized and real-world inputs, evaluated in state-based and vision-based settings. Notably, UniGraspTransformer generates a broader range of grasping poses for objects in various shapes and orientations, resulting in more diverse grasp strategies. Experimental results demonstrate significant improvements over state-of-the-art, UniDexGrasp++, across various object categories, achieving success rate gains of 3.5%, 7.7%, and 10.1% on seen objects, unseen objects within seen categories, and completely unseen objects, respectively, in the vision-based setting. Project page: https://dexhand.github.io/UniGraspTransformer.
CogACT: A Foundational Vision-Language-Action Model for Synergizing Cognition and Action in Robotic Manipulation
Li, Qixiu, Liang, Yaobo, Wang, Zeyu, Luo, Lin, Chen, Xi, Liao, Mozheng, Wei, Fangyun, Deng, Yu, Xu, Sicheng, Zhang, Yizhong, Wang, Xiaofan, Liu, Bei, Fu, Jianlong, Bao, Jianmin, Chen, Dong, Shi, Yuanchun, Yang, Jiaolong, Guo, Baining
The advancement of large Vision-Language-Action (VLA) models has significantly improved robotic manipulation in terms of language-guided task execution and generalization to unseen scenarios. While existing VLAs adapted from pretrained large Vision-Language-Models (VLM) have demonstrated promising generalizability, their task performance is still unsatisfactory as indicated by the low tasks success rates in different environments. In this paper, we present a new advanced VLA architecture derived from VLM. Unlike previous works that directly repurpose VLM for action prediction by simple action quantization, we propose a omponentized VLA architecture that has a specialized action module conditioned on VLM output. We systematically study the design of the action module and demonstrates the strong performance enhancement with diffusion action transformers for action sequence modeling, as well as their favorable scaling behaviors. We also conduct comprehensive experiments and ablation studies to evaluate the efficacy of our models with varied designs. The evaluation on 5 robot embodiments in simulation and real work shows that our model not only significantly surpasses existing VLAs in task performance and but also exhibits remarkable adaptation to new robots and generalization to unseen objects and backgrounds. It exceeds the average success rates of OpenVLA which has similar model size (7B) with ours by over 35% in simulated evaluation and 55% in real robot experiments. It also outperforms the large RT-2-X model (55B) by 18% absolute success rates in simulation. Code and models can be found on our project page (https://cogact.github.io/).
PPTC-R benchmark: Towards Evaluating the Robustness of Large Language Models for PowerPoint Task Completion
Zhang, Zekai, Guo, Yiduo, Liang, Yaobo, Zhao, Dongyan, Duan, Nan
The growing dependence on Large Language Models (LLMs) for finishing user instructions necessitates a comprehensive understanding of their robustness to complex task completion in real-world situations. To address this critical need, we propose the PowerPoint Task Completion Robustness benchmark (PPTC-R) to measure LLMs' robustness to the user PPT task instruction and software version. Specifically, we construct adversarial user instructions by attacking user instructions at sentence, semantic, and multi-language levels. To assess the robustness of Language Models to software versions, we vary the number of provided APIs to simulate both the newest version and earlier version settings. Subsequently, we test 3 closed-source and 4 open-source LLMs using a benchmark that incorporates these robustness settings, aiming to evaluate how deviations impact LLMs' API calls for task completion. We find that GPT-4 exhibits the highest performance and strong robustness in our benchmark, particularly in the version update and the multilingual settings. However, we find that all LLMs lose their robustness when confronted with multiple challenges (e.g., multi-turn) simultaneously, leading to significant performance drops. We further analyze the robustness behavior and error reasons of LLMs in our benchmark, which provide valuable insights for researchers to understand the LLM's robustness in task completion and develop more robust LLMs and agents. We release the code and data at \url{https://github.com/ZekaiGalaxy/PPTCR}.
Machine-Created Universal Language for Cross-lingual Transfer
Liang, Yaobo, Zhu, Quanzhi, Zhao, Junhe, Duan, Nan
There are two primary approaches to addressing cross-lingual transfer: multilingual pre-training, which implicitly aligns the hidden representations of various languages, and translate-test, which explicitly translates different languages into an intermediate language, such as English. Translate-test offers better interpretability compared to multilingual pre-training. However, it has lower performance than multilingual pre-training(Conneau and Lample, 2019; Conneau et al, 2020) and struggles with word-level tasks due to translation altering word order. As a result, we propose a new Machine-created Universal Language (MUL) as an alternative intermediate language. MUL comprises a set of discrete symbols forming a universal vocabulary and a natural language to MUL translator for converting multiple natural languages to MUL. MUL unifies shared concepts from various languages into a single universal word, enhancing cross-language transfer. Additionally, MUL retains language-specific words and word order, allowing the model to be easily applied to word-level tasks. Our experiments demonstrate that translating into MUL yields improved performance compared to multilingual pre-training, and our analysis indicates that MUL possesses strong interpretability. The code is at: https://github.com/microsoft/Unicoder/tree/master/MCUL.
Learning to Plan with Natural Language
Guo, Yiduo, Liang, Yaobo, Wu, Chenfei, Wu, Wenshan, Zhao, Dongyan, Duan, Nan
Large Language Models (LLMs) have shown remarkable performance in various basic natural language tasks. For completing the complex task, we still need a plan for the task to guide LLMs to generate the specific solutions step by step. LLMs can directly generate task plans, but these plans may still contain factual errors or are incomplete. A high-quality task plan contains correct step-by-step solutions for solving all situations and behavioral instructions for avoiding mistakes. To obtain it, we propose the Learning to Plan method, which involves two phases: (1) In the first learning task plan phase, it iteratively updates the task plan with new step-by-step solutions and behavioral instructions, which are obtained by prompting LLMs to derive from training error feedback. (2) In the subsequent test phase, the LLM uses the learned task plan to guide the inference of LLM on the test set. We demonstrate the effectiveness of our method on the five different reasoning type tasks (8 datasets). Further, our analysis experiment shows that the task plan learned by one LLM can directly guide another LLM to improve its performance, which reveals a new transfer learning paradigm. We release the code at \url{https://github.com/Eureka6174/LearnNLPlan}
Competition-Level Problems are Effective LLM Evaluators
Huang, Yiming, Lin, Zhenghao, Liu, Xiao, Gong, Yeyun, Lu, Shuai, Lei, Fangyu, Liang, Yaobo, Shen, Yelong, Lin, Chen, Duan, Nan, Chen, Weizhu
Large language models (LLMs) have demonstrated impressive reasoning capabilities, yet there is ongoing debate about these abilities and the potential data contamination problem recently. This paper aims to evaluate the reasoning capacities of LLMs, specifically in solving recent competition-level programming problems in Codeforces, which are expert-crafted and unique, requiring deep understanding and robust reasoning skills. We first provide a comprehensive evaluation of GPT-4's peiceived zero-shot performance on this task, considering various aspects such as problems' release time, difficulties, and types of errors encountered. Surprisingly, the peiceived performance of GPT-4 has experienced a cliff like decline in problems after September 2021 consistently across all the difficulties and types of problems, which shows the potential data contamination, as well as the challenges for any existing LLM to solve unseen complex reasoning problems. We further explore various approaches such as fine-tuning, Chain-of-Thought prompting and problem description simplification, unfortunately none of them is able to consistently mitigate the challenges. Through our work, we emphasis the importance of this excellent data source for assessing the genuine reasoning capabilities of LLMs, and foster the development of LLMs with stronger reasoning abilities and better generalization in the future.
PPTC Benchmark: Evaluating Large Language Models for PowerPoint Task Completion
Guo, Yiduo, Zhang, Zekai, Liang, Yaobo, Zhao, Dongyan, Duan, Nan
Recent evaluations of Large Language Models (LLMs) have centered around testing their zero-shot/few-shot capabilities for basic natural language tasks and their ability to translate instructions into tool APIs. However, the evaluation of LLMs utilizing complex tools to finish multi-turn, multi-modal instructions in a complex multi-modal environment has not been investigated. To address this gap, we introduce the PowerPoint Task Completion (PPTC) benchmark to assess LLMs' ability to create and edit PPT files based on user instructions. It contains 279 multi-turn sessions covering diverse topics and hundreds of instructions involving multi-modal operations. We also propose the PPTX-Match Evaluation System that evaluates if LLMs finish the instruction based on the prediction file rather than the label API sequence, thus it supports various LLM-generated API sequences. We measure 3 closed LLMs and 6 open-source LLMs. The results show that GPT-4 outperforms other LLMs with 75.1\% accuracy in single-turn dialogue testing but faces challenges in completing entire sessions, achieving just 6\% session accuracy. We find three main error causes in our benchmark: error accumulation in the multi-turn session, long PPT template processing, and multi-modality perception. These pose great challenges for future LLM and agent systems. We release the data, code, and evaluation system of PPTC at \url{https://github.com/gydpku/PPTC}.
EIPE-text: Evaluation-Guided Iterative Plan Extraction for Long-Form Narrative Text Generation
You, Wang, Wu, Wenshan, Liang, Yaobo, Mao, Shaoguang, Wu, Chenfei, Cao, Maosong, Cai, Yuzhe, Guo, Yiduo, Xia, Yan, Wei, Furu, Duan, Nan
Plan-and-Write is a common hierarchical approach in long-form narrative text generation, which first creates a plan to guide the narrative writing. Following this approach, several studies rely on simply prompting large language models for planning, which often yields suboptimal results. In this paper, we propose a new framework called Evaluation-guided Iterative Plan Extraction for long-form narrative text generation (EIPE-text), which extracts plans from the corpus of narratives and utilizes the extracted plans to construct a better planner. EIPE-text has three stages: plan extraction, learning, and inference. In the plan extraction stage, it iteratively extracts and improves plans from the narrative corpus and constructs a plan corpus. We propose a question answer (QA) based evaluation mechanism to automatically evaluate the plans and generate detailed plan refinement instructions to guide the iterative improvement. In the learning stage, we build a better planner by fine-tuning with the plan corpus or in-context learning with examples in the plan corpus. Finally, we leverage a hierarchical approach to generate long-form narratives. We evaluate the effectiveness of EIPE-text in the domains of novels and storytelling. Both GPT-4-based evaluations and human evaluations demonstrate that our method can generate more coherent and relevant long-form narratives. Our code will be released in the future.
AGIEval: A Human-Centric Benchmark for Evaluating Foundation Models
Zhong, Wanjun, Cui, Ruixiang, Guo, Yiduo, Liang, Yaobo, Lu, Shuai, Wang, Yanlin, Saied, Amin, Chen, Weizhu, Duan, Nan
Evaluating the general abilities of foundation models to tackle human-level tasks is a vital aspect of their development and application in the pursuit of Artificial General Intelligence (AGI). Traditional benchmarks, which rely on artificial datasets, may not accurately represent human-level capabilities. In this paper, we introduce AGIEval, a novel benchmark specifically designed to assess foundation model in the context of human-centric standardized exams, such as college entrance exams, law school admission tests, math competitions, and lawyer qualification tests. We evaluate several state-of-the-art foundation models, including GPT-4, ChatGPT, and Text-Davinci-003, using this benchmark. Impressively, GPT-4 surpasses average human performance on SAT, LSAT, and math competitions, attaining a 95% accuracy rate on the SAT Math test and a 92.5% accuracy on the English test of the Chinese national college entrance exam. This demonstrates the extraordinary performance of contemporary foundation models. In contrast, we also find that GPT-4 is less proficient in tasks that require complex reasoning or specific domain knowledge. Our comprehensive analyses of model capabilities (understanding, knowledge, reasoning, and calculation) reveal these models' strengths and limitations, providing valuable insights into future directions for enhancing their general capabilities. By concentrating on tasks pertinent to human cognition and decision-making, our benchmark delivers a more meaningful and robust evaluation of foundation models' performance in real-world scenarios. The data, code, and all model outputs are released in https://github.com/ruixiangcui/AGIEval.
GameEval: Evaluating LLMs on Conversational Games
Qiao, Dan, Wu, Chenfei, Liang, Yaobo, Li, Juntao, Duan, Nan
The rapid advancements in large language models (LLMs) have presented challenges in evaluating those models. Existing evaluation methods are either reference-based or preference based, which inevitably need human intervention or introduce test bias caused by evaluator models. In this paper, we propose GameEval, a novel approach to evaluating LLMs through goal-driven conversational games, overcoming the limitations of previous methods. GameEval treats LLMs as game players and assigns them distinct roles with specific goals achieved by launching conversations of various forms, including discussion, question answering, and voting. We design three unique games with cooperative or adversarial objectives, accompanied by corresponding evaluation metrics, to show how this new paradigm comprehensively evaluates model performance.Through extensive experiments, we show that GameEval can effectively differentiate the capabilities of various LLMs, providing a comprehensive assessment of their integrated abilities to solve complex problems. Our public anonymous code is available at https://github.com/GameEval/GameEval.