Goto

Collaborating Authors

 Liang, Susan


Generative AI for Cel-Animation: A Survey

arXiv.org Artificial Intelligence

Traditional Celluloid (Cel) Animation production pipeline encompasses multiple essential steps, including storyboarding, layout design, keyframe animation, inbetweening, and colorization, which demand substantial manual effort, technical expertise, and significant time investment. These challenges have historically impeded the efficiency and scalability of Cel-Animation production. The rise of generative artificial intelligence (GenAI), encompassing large language models, multimodal models, and diffusion models, offers innovative solutions by automating tasks such as inbetween frame generation, colorization, and storyboard creation. This survey explores how GenAI integration is revolutionizing traditional animation workflows by lowering technical barriers, broadening accessibility for a wider range of creators through tools like AniDoc, ToonCrafter, and AniSora, and enabling artists to focus more on creative expression and artistic innovation. Despite its potential, issues such as maintaining visual consistency, ensuring stylistic coherence, and addressing ethical considerations continue to pose challenges. Furthermore, this paper discusses future directions and explores potential advancements in AI-assisted animation. For further exploration and resources, please visit our GitHub repository: https://github.com/yunlong10/Awesome-AI4Animation


VidComposition: Can MLLMs Analyze Compositions in Compiled Videos?

arXiv.org Artificial Intelligence

The advancement of Multimodal Large Language Models (MLLMs) has enabled significant progress in multimodal understanding, expanding their capacity to analyze video content. However, existing evaluation benchmarks for MLLMs primarily focus on abstract video comprehension, lacking a detailed assessment of their ability to understand video compositions, the nuanced interpretation of how visual elements combine and interact within highly compiled video contexts. We introduce VidComposition, a new benchmark specifically designed to evaluate the video composition understanding capabilities of MLLMs using carefully curated compiled videos and cinematic-level annotations. VidComposition includes 982 videos with 1706 multiple-choice questions, covering various compositional aspects such as camera movement, angle, shot size, narrative structure, character actions and emotions, etc. Our comprehensive evaluation of 33 open-source and proprietary MLLMs reveals a significant performance gap between human and model capabilities. This highlights the limitations of current MLLMs in understanding complex, compiled video compositions and offers insights into areas for further improvement. The leaderboard and evaluation code are available at https://yunlong10.github.io/VidComposition/.


Scaling Concept With Text-Guided Diffusion Models

arXiv.org Artificial Intelligence

Text-guided diffusion models have revolutionized generative tasks by producing high-fidelity content from text descriptions. They have also enabled an editing paradigm where concepts can be replaced through text conditioning (e.g., a dog to a tiger). In this work, we explore a novel approach: instead of replacing a concept, can we enhance or suppress the concept itself? Through an empirical study, we identify a trend where concepts can be decomposed in text-guided diffusion models. Leveraging this insight, we introduce ScalingConcept, a simple yet effective method to scale decomposed concepts up or down in real input without introducing new elements. To systematically evaluate our approach, we present the WeakConcept-10 dataset, where concepts are imperfect and need to be enhanced. More importantly, ScalingConcept enables a variety of novel zero-shot applications across image and audio domains, including tasks such as canonical pose generation and generative sound highlighting or removal.


Learning to Transform Dynamically for Better Adversarial Transferability

arXiv.org Artificial Intelligence

Adversarial examples, crafted by adding perturbations imperceptible to humans, can deceive neural networks. Recent studies identify the adversarial transferability across various models, \textit{i.e.}, the cross-model attack ability of adversarial samples. To enhance such adversarial transferability, existing input transformation-based methods diversify input data with transformation augmentation. However, their effectiveness is limited by the finite number of available transformations. In our study, we introduce a novel approach named Learning to Transform (L2T). L2T increases the diversity of transformed images by selecting the optimal combination of operations from a pool of candidates, consequently improving adversarial transferability. We conceptualize the selection of optimal transformation combinations as a trajectory optimization problem and employ a reinforcement learning strategy to effectively solve the problem. Comprehensive experiments on the ImageNet dataset, as well as practical tests with Google Vision and GPT-4V, reveal that L2T surpasses current methodologies in enhancing adversarial transferability, thereby confirming its effectiveness and practical significance. The code is available at https://github.com/RongyiZhu/L2T.


Approximated Likelihood Ratio: A Forward-Only and Parallel Framework for Boosting Neural Network Training

arXiv.org Artificial Intelligence

Efficient and biologically plausible alternatives to backpropagation in neural network training remain a challenge due to issues such as high computational complexity and additional assumptions about neural networks, which limit scalability to deeper networks. The likelihood ratio method offers a promising gradient estimation strategy but is constrained by significant memory consumption, especially when deploying multiple copies of data to reduce estimation variance. In this paper, we introduce an approximation technique for the likelihood ratio (LR) method to alleviate computational and memory demands in gradient estimation. By exploiting the natural parallelism during the backward pass using LR, we further provide a high-performance training strategy, which pipelines both the forward and backward pass, to make it more suitable for the computation on specialized hardware. Extensive experiments demonstrate the effectiveness of the approximation technique in neural network training. This work underscores the potential of the likelihood ratio method in achieving high-performance neural network training, suggesting avenues for further exploration.


Video Understanding with Large Language Models: A Survey

arXiv.org Artificial Intelligence

With the burgeoning growth of online video platforms and the escalating volume of video content, the demand for proficient video understanding tools has intensified markedly. Given the remarkable capabilities of Large Language Models (LLMs) in language and multimodal tasks, this survey provides a detailed overview of the recent advancements in video understanding harnessing the power of LLMs (Vid-LLMs). The emergent capabilities of Vid-LLMs are surprisingly advanced, particularly their ability for open-ended spatial-temporal reasoning combined with commonsense knowledge, suggesting a promising path for future video understanding. We examine the unique characteristics and capabilities of Vid-LLMs, categorizing the approaches into four main types: LLM-based Video Agents, Vid-LLMs Pretraining, Vid-LLMs Instruction Tuning, and Hybrid Methods. Furthermore, this survey presents a comprehensive study of the tasks, datasets, and evaluation methodologies for Vid-LLMs. Additionally, it explores the expansive applications of Vid-LLMs across various domains, highlighting their remarkable scalability and versatility in real-world video understanding challenges. Finally, it summarizes the limitations of existing Vid-LLMs and outlines directions for future research.


Scalable CP Decomposition for Tensor Learning using GPU Tensor Cores

arXiv.org Artificial Intelligence

CP decomposition is a powerful tool for data science, especially gene analysis, deep learning, and quantum computation. However, the application of tensor decomposition is largely hindered by the exponential increment of the computational complexity and storage consumption with the size of tensors. While the data in our real world is usually presented as trillion- or even exascale-scale tensors, existing work can only support billion-scale scale tensors. In our work, we propose the Exascale-Tensor to mitigate the significant gap. Specifically, we propose a compression-based tensor decomposition framework, namely the exascale-tensor, to support exascale tensor decomposition. Then, we carefully analyze the inherent parallelism and propose a bag of strategies to improve computational efficiency. Last, we conduct experiments to decompose tensors ranging from million-scale to trillion-scale for evaluation. Compared to the baselines, the exascale-tensor supports 8,000x larger tensors and a speedup up to 6.95x. We also apply our method to two real-world applications, including gene analysis and tensor layer neural networks, of which the numeric results demonstrate the scalability and effectiveness of our method.