Goto

Collaborating Authors

 Liang, Jie


FEDS: Feature and Entropy-Based Distillation Strategy for Efficient Learned Image Compression

arXiv.org Machine Learning

Learned image compression (LIC) methods have recently outperformed traditional codecs such as VVC in rate-distortion performance. However, their large models and high computational costs have limited their practical adoption. In this paper, we first construct a high-capacity teacher model by integrating Swin-Transformer V2-based attention modules, additional residual blocks, and expanded latent channels, thus achieving enhanced compression performance. Building on this foundation, we propose a \underline{F}eature and \underline{E}ntropy-based \underline{D}istillation \underline{S}trategy (\textbf{FEDS}) that transfers key knowledge from the teacher to a lightweight student model. Specifically, we align intermediate feature representations and emphasize the most informative latent channels through an entropy-based loss. A staged training scheme refines this transfer in three phases: feature alignment, channel-level distillation, and final fine-tuning. Our student model nearly matches the teacher across Kodak (1.24\% BD-Rate increase), Tecnick (1.17\%), and CLIC (0.55\%) while cutting parameters by about 63\% and accelerating encoding/decoding by around 73\%. Moreover, ablation studies indicate that FEDS generalizes effectively to transformer-based networks. The experimental results demonstrate our approach strikes a compelling balance among compression performance, speed, and model parameters, making it well-suited for real-time or resource-limited scenarios.


ALPHAGMUT: A Rationale-Guided Alpha Shape Graph Neural Network to Evaluate Mutation Effects

arXiv.org Artificial Intelligence

In silico methods evaluating the mutation effects of missense mutations are providing an important approach for understanding mutations in personal genomes and identifying disease-relevant biomarkers. However, existing methods, including deep learning methods, heavily rely on sequence-aware information, and do not fully leverage the potential of available 3D structural information. In addition, these methods may exhibit an inability to predict mutations in domains difficult to formulate sequence-based embeddings. In this study, we introduce a novel rationale-guided graph neural network AlphaGMut to evaluate mutation effects and to distinguish pathogenic mutations from neutral mutations. We compute the alpha shapes of protein structures to obtain atomic-resolution edge connectivities and map them to an accurate residue-level graph representation. We then compute structural-, topological-, biophysical-, and sequence properties of the mutation sites, which are assigned as node attributes in the graph. These node attributes could effectively guide the graph neural network to learn the difference between pathogenic and neutral mutations using k-hop message passing with a short training period. We demonstrate that AlphaGMut outperforms state-of-the-art methods, including DeepMind's AlphaMissense, in many performance metrics. In addition, AlphaGMut has the advantage of performing well in alignment-free settings, which provides broader prediction coverage and better generalization compared to current methods requiring deep sequence-aware information.


When Fuzzing Meets LLMs: Challenges and Opportunities

arXiv.org Artificial Intelligence

Fuzzing, a widely-used technique for bug detection, has seen advancements through Large Language Models (LLMs). Despite their potential, LLMs face specific challenges in fuzzing. In this paper, we identified five major challenges of LLM-assisted fuzzing. To support our findings, we revisited the most recent papers from top-tier conferences, confirming that these challenges are widespread. As a remedy, we propose some actionable recommendations to help improve applying LLM in Fuzzing and conduct preliminary evaluations on DBMS fuzzing. The results demonstrate that our recommendations effectively address the identified challenges.


Improved Hybrid Layered Image Compression using Deep Learning and Traditional Codecs

arXiv.org Machine Learning

Recently deep learning-based methods have been applied in image compression and achieved many promising results. In this paper, we propose an improved hybrid layered image compression framework by combining deep learning and the traditional image codecs. At the encoder, we first use a convolutional neural network (CNN) to obtain a compact representation of the input image, which is losslessly encoded by the FLIF codec as the base layer of the bit stream. A coarse reconstruction of the input is obtained by another CNN from the reconstructed compact representation. The residual between the input and the coarse reconstruction is then obtained and encoded by the H.265/HEVC-based BPG codec as the enhancement layer of the bit stream. Experimental results using the Kodak and Tecnick datasets show that the proposed scheme outperforms the state-of-the-art deep learning-based layered coding scheme and traditional codecs including BPG in both PSNR and MS-SSIM metrics across a wide range of bit rates, when the images are coded in the RGB444 domain.


Semi-Recurrent CNN-based VAE-GAN for Sequential Data Generation

arXiv.org Machine Learning

A semi-recurrent hybrid VAE-GAN model for generating sequential data is introduced. In order to consider the spatial correlation of the data in each frame of the generated sequence, CNNs are utilized in the encoder, generator, and discriminator. The subsequent frames are sampled from the latent distributions obtained by encoding the previous frames. As a result, the dependencies between the frames are maintained. Two testing frameworks for synthesizing a sequence with any number of frames are also proposed. The promising experimental results on piano music generation indicates the potential of the proposed framework in modeling other sequential data such as video.


Automatic Model Selection in Subspace Clustering via Triplet Relationships

AAAI Conferences

This paper addresses both the model selection (i.e., estimating the number of clusters K) and subspace clustering problems in a unified model. The real data always distribute on a union of low-dimensional sub-manifolds which are embedded in a high-dimensional ambient space. In this regard, the state-of-the-art subspace clustering approaches firstly learn the affinity among samples, followed by a spectral clustering to generate the segmentation. However, arguably, the intrinsic geometrical structures among samples are rarely considered in the optimization process. In this paper, we propose to simultaneously estimate K and segment the samples according to the local similarity relationships derived from the affinity matrix. Given the correlations among samples, we define a novel data structure termed the Triplet, each of which reflects a high relevance and locality among three samples which are aimed to be segmented into the same subspace. While the traditional pairwise distance can be close between inter-cluster samples lying on the intersection of two subspaces, the wrong assignments can be avoided by the hyper-correlation derived from the proposed triplets due to the complementarity of multiple constraints. Sequentially, we propose to greedily optimize a new model selection reward to estimate K according to the correlations between inter-cluster triplets. We simultaneously optimize a fusion reward based on the similarities between triplets and clusters to generate the final segmentation. Extensive experiments on the benchmark datasets demonstrate the effectiveness and robustness of the proposed approach.


Understanding Image Impressiveness Inspired by Instantaneous Human Perceptual Cues

AAAI Conferences

With the explosion of visual information nowadays, millions of digital images are available to the users. How to efficiently explore a large set of images and retrieve useful information thus becomes extremely important. Unfortunately only some of the images can impress the user at first glance. Others that make little sense in human perception are often discarded, while still costing valuable time and space. Therefore, it is significant to identify these two kinds of images for relieving the load of online repositories and accelerating information retrieval process. However, most of the existing image properties, e.g., memorability and popularity, are based on repeated human interactions, which limit the research and application of evaluating image quality in terms of instantaneous impression. In this paper, we propose a novel image property, called impressiveness, that measures how images impress people with a short-term contact. This is based on an impression-driven model inspired by a number of important human perceptual cues. To achieve this, we first collect three datasets in various domains, which are labeled according to the instantaneous sensation of the annotators. Then we investigate the impressiveness property via six established human perceptual cues as well as the corresponding features from pixel to semantic levels. Sequentially, we verify the consistency of the impressiveness which can be quantitatively measured by multiple visual representations, and evaluate their latent relationships. Finally, we apply the proposed impressiveness property to rank the images for an efficient image recommendation system.