Goto

Collaborating Authors

 Liang, Ding


TripoSG: High-Fidelity 3D Shape Synthesis using Large-Scale Rectified Flow Models

arXiv.org Artificial Intelligence

Recent advancements in diffusion techniques have propelled image and video generation to unprece- dented levels of quality, significantly accelerating the deployment and application of generative AI. However, 3D shape generation technology has so far lagged behind, constrained by limitations in 3D data scale, complexity of 3D data process- ing, and insufficient exploration of advanced tech- niques in the 3D domain. Current approaches to 3D shape generation face substantial challenges in terms of output quality, generalization capa- bility, and alignment with input conditions. We present TripoSG, a new streamlined shape diffu- sion paradigm capable of generating high-fidelity 3D meshes with precise correspondence to input images. Specifically, we propose: 1) A large-scale rectified flow transformer for 3D shape generation, achieving state-of-the-art fidelity through training on extensive, high-quality data. 2) A hybrid supervised training strategy combining SDF, normal, and eikonal losses for 3D VAE, achieving high- quality 3D reconstruction performance. 3) A data processing pipeline to generate 2 million high- quality 3D samples, highlighting the crucial rules for data quality and quantity in training 3D gen- erative models. Through comprehensive experi- ments, we have validated the effectiveness of each component in our new framework. The seamless integration of these parts has enabled TripoSG to achieve state-of-the-art performance in 3D shape generation. The resulting 3D shapes exhibit en- hanced detail due to high-resolution capabilities and demonstrate exceptional fidelity to input im- ages. Moreover, TripoSG demonstrates improved versatility in generating 3D models from diverse image styles and contents, showcasing strong gen- eralization capabilities. To foster progress and innovation in the field of 3D generation, we will make our model publicly available.


TEXGen: a Generative Diffusion Model for Mesh Textures

arXiv.org Artificial Intelligence

While high-quality texture maps are essential for realistic 3D asset rendering, few studies have explored learning directly in the texture space, especially on large-scale datasets. In this work, we depart from the conventional approach of relying on pre-trained 2D diffusion models for test-time optimization of 3D textures. Instead, we focus on the fundamental problem of learning in the UV texture space itself. For the first time, we train a large diffusion model capable of directly generating high-resolution texture maps in a feed-forward manner. To facilitate efficient learning in high-resolution UV spaces, we propose a scalable network architecture that interleaves convolutions on UV maps with attention layers on point clouds. Leveraging this architectural design, we train a 700 million parameter diffusion model that can generate UV texture maps guided by text prompts and single-view images. Once trained, our model naturally supports various extended applications, including text-guided texture inpainting, sparse-view texture completion, and text-driven texture synthesis. Project page is at http://cvmi-lab.github.io/TEXGen/.


Text-to-3D with Classifier Score Distillation

arXiv.org Artificial Intelligence

However, it is still challenging and expensive to create a high-quality 3D asset as it requires a high level of expertise. Therefore, automating this process with generative models has become an important problem, which remains challenging due to the scarcity of data and the complexity of 3D representations. Recently, techniques based on Score Distillation Sampling (SDS) (Poole et al., 2022; Lin et al., 2023; Chen et al., 2023; Wang et al., 2023b), also known as Score Jacobian Chaining (SJC) (Wang et al., 2023a), have emerged as a major research direction for text-to-3D generation, as they can produce high-quality and intricate 3D results from diverse text prompts without requiring 3D data for training. The core principle behind SDS is to optimize 3D representations by encouraging their rendered images to move towards high probability density regions conditioned on the text, where the supervision is provided by a pre-trained 2D diffusion model (Ho et al., 2020; Sohl-Dickstein et al., 2015; Rombach et al., 2022; Saharia et al., 2022; Balaji et al., 2022). DreamFusion (Poole et al., 2022) advocates the use of SDS for the optimization of Neural Radiance Fields (NeRF).


TeacherLM: Teaching to Fish Rather Than Giving the Fish, Language Modeling Likewise

arXiv.org Artificial Intelligence

Large Language Models (LLMs) exhibit impressive reasoning and data augmentation capabilities in various NLP tasks. However, what about small models? In this work, we propose TeacherLM-7.1B, capable of annotating relevant fundamentals, chain of thought, and common mistakes for most NLP samples, which makes annotation more than just an answer, thus allowing other models to learn "why" instead of just "what". The TeacherLM-7.1B model achieved a zero-shot score of 52.3 on MMLU, surpassing most models with over 100B parameters. Even more remarkable is its data augmentation ability. Based on TeacherLM-7.1B, we augmented 58 NLP datasets and taught various student models with different parameters from OPT and BLOOM series in a multi-task setting. The experimental results indicate that the data augmentation provided by TeacherLM has brought significant benefits. We will release the TeacherLM series of models and augmented datasets as open-source.


Reconstruct Before Summarize: An Efficient Two-Step Framework for Condensing and Summarizing Meeting Transcripts

arXiv.org Artificial Intelligence

Based on this understanding, Although numerous achievements have been made we propose a two-step meeting summarization in the well-structured text abstractive summarization framework, Reconstrcut before Summarize(RbS), (Zhang et al., 2020a; Liu* et al., 2018; Lewis to address the challenge of scattered et al., 2020), the research on meeting summarization information in meetings. RbS adopts a reconstructor is still stretched in limit. There are some outstanding to reconstruct the responses in the meeting, it challenges in this field, including 1) much also synchronically traces out which texts in the noise brought from automated speech recognition meeting drove the responses and marks them as models; 2) lengthy meeting transcripts consisting essential contents. Therefore, salient information of casual conversations, content redundancy, and is captured and annotated as anchor tokens in RbS.


Towards Versatile and Efficient Visual Knowledge Integration into Pre-trained Language Models with Cross-Modal Adapters

arXiv.org Artificial Intelligence

Humans learn language via multi-modal knowledge. However, due to the text-only pre-training scheme, most existing pre-trained language models (PLMs) are hindered from the multi-modal information. To inject visual knowledge into PLMs, existing methods incorporate either the text or image encoder of vision-language models (VLMs) to encode the visual information and update all the original parameters of PLMs for knowledge fusion. In this paper, we propose a new plug-and-play module, X-adapter, to flexibly leverage the aligned visual and textual knowledge learned in pre-trained VLMs and efficiently inject them into PLMs. Specifically, we insert X-adapters into PLMs, and only the added parameters are updated during adaptation. To fully exploit the potential in VLMs, X-adapters consist of two sub-modules, V-expert and T-expert, to fuse VLMs' image and text representations, respectively. We can opt for activating different sub-modules depending on the downstream tasks. Experimental results show that our method can significantly improve the performance on object-color reasoning and natural language understanding (NLU) tasks compared with PLM baselines.


VCSUM: A Versatile Chinese Meeting Summarization Dataset

arXiv.org Artificial Intelligence

Compared to news and chat summarization, the development of meeting summarization is hugely decelerated by the limited data. To this end, we introduce a versatile Chinese meeting summarization dataset, dubbed VCSum, consisting of 239 real-life meetings, with a total duration of over 230 hours. We claim our dataset is versatile because we provide the annotations of topic segmentation, headlines, segmentation summaries, overall meeting summaries, and salient sentences for each meeting transcript. As such, the dataset can adapt to various summarization tasks or methods, including segmentation-based summarization, multi-granularity summarization and retrieval-then-generate summarization. Our analysis confirms the effectiveness and robustness of VCSum. We also provide a set of benchmark models regarding different downstream summarization tasks on VCSum to facilitate further research. The dataset and code will be released at https://github.com/hahahawu/VCSum.


Learning Locality and Isotropy in Dialogue Modeling

arXiv.org Artificial Intelligence

Existing dialogue modeling methods have achieved promising performance on various dialogue tasks with the aid of Transformer and the large-scale pre-trained language models. However, some recent studies revealed that the context representations produced by these methods suffer the problem of anisotropy. In this paper, we find that the generated representations are also not conversational, losing the conversation structure information during the context modeling stage. To this end, we identify two properties in dialogue modeling, i.e., locality and isotropy, and present a simple method for dialogue representation calibration, namely SimDRC, to build isotropic and conversational feature spaces. Experimental results show that our approach significantly outperforms current stateof-the-art models on three open-domain dialogue tasks with eight benchmarks across both automatic and human evaluation metrics. More in-depth analyses further confirm the effectiveness of our proposed approach. Dialogue modeling (Serban et al., 2016; Mehri et al., 2019; Liu et al., 2021) is to encode the raw text of the input dialogue to the contextual representations. Although the Transformer-based dialogue modeling methods (Hosseini-Asl et al., 2020; Liu et al., 2021) have achieved great success on various dialogue tasks, there are still some impediments in these methods that are not well explored nowadays. Specifically, recent studies (Ethayarajh, 2019; Su et al., 2022) have revealed that on dialogue generation tasks, the representations produced by existing dialogue modeling methods are anisotropic, i.e. features occupy a narrow cone in the vector space, thus leading to the problem of degeneration. To alleviate this problem, previous solutions (e.g. SimCTG) (Su et al., 2021; 2022) encourage the model to learn isotropic token embeddings by pushing away the representations of distinct tokens. While building the more discriminative and isotropic feature space, these methods still ignore learning dialogue-specific features, such as inter-speaker correlations and conversational structure information, in the dialogue modeling stage.


INTERN: A New Learning Paradigm Towards General Vision

arXiv.org Artificial Intelligence

Enormous waves of technological innovations over the past several years, marked by the advances in AI technologies, are profoundly reshaping the industry and the society. However, down the road, a key challenge awaits us, that is, our capability of meeting rapidly-growing scenario-specific demands is severely limited by the cost of acquiring a commensurate amount of training data. This difficult situation is in essence due to limitations of the mainstream learning paradigm: we need to train a new model for each new scenario, based on a large quantity of well-annotated data and commonly from scratch. In tackling this fundamental problem, we move beyond and develop a new learning paradigm named INTERN. By learning with supervisory signals from multiple sources in multiple stages, the model being trained will develop strong generalizability. We evaluate our model on 26 well-known datasets that cover four categories of tasks in computer vision. In most cases, our models, adapted with only 10% of the training data in the target domain, outperform the counterparts trained with the full set of data, often by a significant margin. This is an important step towards a promising prospect where such a model with general vision capability can dramatically reduce our reliance on data, thus expediting the adoption of AI technologies. Furthermore, revolving around our new paradigm, we also introduce a new data system, a new architecture, and a new benchmark, which, together, form a general vision ecosystem to support its future development in an open and inclusive manner.


GroupLink: An End-to-end Multitask Method for Word Grouping and Relation Extraction in Form Understanding

arXiv.org Artificial Intelligence

Forms are a common type of document in real life and carry rich information through textual contents and the organizational structure. To realize automatic processing of forms, word grouping and relation extraction are two fundamental and crucial steps after preliminary processing of optical character reader (OCR). Word grouping is to aggregate words that belong to the same semantic entity, and relation extraction is to predict the links between semantic entities. Existing works treat them as two individual tasks, but these two tasks are correlated and can reinforce each other. The grouping process will refine the integrated representation of the corresponding entity, and the linking process will give feedback to the grouping performance. For this purpose, we acquire multimodal features from both textual data and layout information and build an end-to-end model through multitask training to combine word grouping and relation extraction to enhance performance on each task. We validate our proposed method on a real-world, fully-annotated, noisy-scanned benchmark, FUNSD, and extensive experiments demonstrate the effectiveness of our method.